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We begin by describing a methodology (first introduced in [Felsenstein, 1981])
for stochastic modeling of evolutionary processes which give rise to N extant ge-
netic sequences from a single unknown ancestral sequence. Two types of biological
events are explicitly modeled: (i) speciation, i.e. divergence of two or more dis-
tinct lineages from an ancestor, and (ii) point substitutions, i.e. replacement of
genetic character data with other characters over time. There are other biological
events which lead to evolutionary change, such as recombination, translocation,
gene duplication, creation of introns and many others, which, while not directly
modeled here, may be investigated - to varying degrees - by an application of the
maximum likelihood framework.

We assume that observed data D consist of N strings (sequences) over a finite
alphabet C. Three most frequently used alphabets are the following:

(1) Nucleotides: A (adenine), C (cytosine), G (guanine) and T/U (thymine
or uracil for RNA). This alphabet is used when studying DNA or RNA
sequences directly.

(2) Aminoacid: The alphabet of 20 residues found on protein polypeptide
chains, applicable to analysis of primary protein structures.

(3) Codon: The alphabet of 61 (for most organisms) codons, i.e. triplets of
nucleotides with certain combinations (stop codons) omitted, appropriate
when investigating the evolution of coding regions of DNA sequences, i.e.
the regions which are translated into proteins by the machinery of the cell.
For a current listing of genetic codes refer to [NCBI, 2000].

The process of speciation/divergence is represented by a phylogenetic tree T - an
acyclic directed graph - whose leaves correspond to extant sequences, and internal
nodes represent (typically) unknown intermediate ancestral sequences. The root
node of the tree corresponds the the ultimate ancestral sequence, and branching
describes divergence of two or more species. We do not place restrictions on the
maximum degree of internal tree nodes, although it is customary to consider binary
trees, because multiple speciation events are rare.

Each position in a present-day sequence represents a physical location (site) on
the genome of the corresponding organism. It is possible that over the course of
evolutionary history, the physical location of a given site changed from organism to
organism, and that certain sites are only present in a subset of N sequences, due
to insertion and deletion of subsequences. Typically, the sequences that we wish
to analyze are homologous, i.e. such that all sites share a common evolutionary
path and sequences as a whole serve similar functions in extant species. A good
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Figure 1. Example of a phylogenetic tree with known ancestral states.

example would be a gene present in all organisms in the data set. Before maximum
likelihood framework can be applied, data sequences must be aligned. During
alignment, one of many known algorithms (see [Pevzner, 2000], pp123-132 for an
overview) is used to identify the sites which were derived from a common ancestral
state, and subsequent insertion/deletion events are accounted for. All sequences in
an alignment have the same length - M characters from C

⋃
{′−′}, where ’-’ denotes

a deletion (or insertion).

1. General remarks on likelihood function evaluation.

We label branches of the tree T by bi, where i ranges from 1 to the total number
of branches in the tree. When we consider a rooted binary tree with N leaves, the
total number of branches is 2N − 2. Each branch is associated with the node it is
incident upon and has an associated transition probability function

(1) Qi
x,y(t; θ) = Prθ {x is replaced with y in time t : x, y ∈ C} ,

where the superscript i denotes the index of the branch that the transition function
is associated with.

The transition probability function depends on the branch length ti, and, possi-
bly, other parameters, referred to cumulatively by θ.

We further assume that substitution processes along each branch operate inde-
pendently of one another. If characters at the internal nodes of the trees, i.e. ances-
tral sequences, were known, then evaluating the likelihood of a particular alignment
site Ds, given the tree T , a vector of parameter values and branch lengths, would
be a simple matter of multiplying all the relevant transition probabilities. For in-
stance, the likelihood of observing the nucleotide data given the tree and branch
lengths in Figure 1 can be evaluated as follows:

L(Ds; T , θ) = Q1
T,A(t1; θ)Q8

T,T (t8; θ)Q2
T,C(t2; θ)Q7

T,T (t7; θ)×
Q3

T,T (t3; θ)Q6
T,T (t6; θ)Q4

T,T (t4; θ)Q5
T,T (t5; θ)
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Figure 2. Example of a phylogenetic tree with unknown ancestral states.

Ds refers to the s-th column in a multiple sequence alignment (ACTTT in this
case).

Clearly, it is unreasonable to demand that ancestral sequences be known. Most
often, all that can be observed are leaf sequences, which correspond to modern
day organisms. Therefore, we need to be able to evaluate the likelihood of the
data knowing only leaf characters. To do so, we compute the sum over all possible
character assignments to internal nodes of the tree. Using Figure 2 as a reference,
such an evaluation would proceed as follows:

L(Ds; T , θ) =
∑
c9∈C

∑
c8∈C

∑
c7∈C

∑
c6∈C

π(c9)Q1
c9,A(t1; θ)Q8

c9,c8
(t8; θ)Q2

c8,C(t2; θ)× (2)

Q7
c8,c7

(t7; θ)Q3
c7,T (t3; θ)Q6

c7,c6
(t6; θ)Q4

c6,T (t4; θ)Q5
c6,T (t5; θ),

where π(c) denotes the probability of observing character c ∈ C at the root of the
tree. While this calculation is straightforward, it is clearly not computationally
feasible, because for a tree on N sequences, there will be |C|N−2 terms in the sum.
However, recalling that transition probabilities along a branch are independent of
other branches, it is possible to rearrange the sum in a computationally efficient
manner.

2. Recursive nature of the likelihood function.

Upon closer examination, Eq. (2), can be rewritten in a more computationally
efficient way by grouping the terms according to their hierarchical arrangement in
the tree:

L(Ds; T , θ) =
∑
c9∈C

π(c9)Q1
c9,A(t1; θ)

∑
c8∈C

Q8
c9,c8

(t8; θ)Q2
c8,C(t2; θ)×

∑
c7∈C

(
Q7

c8,c7
(t7; θ)Q3

c7,T (t3; θ)
∑
c6∈C

(
Q6

c7,c6
(t6; θ)Q4

c6,T (t4; θ)Q5
c6,T (t5; θ)

))
The sum, as just written, can be evaluated with O(|C|2N) operations, which is

eminently feasible. This observation was first made by Felsenstein in [Felsenstein, 1981],
and he referred to it as the pruning algorithm.
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Formally, we introduce the partial likelihood Li(n), which is the likelihood for
the subtree below node n given that the character at node n is i. The following
properties of partial likelihood hold:

(1) If n is a leaf node, then Li(n) = 0 if i is not the observed character, and
Li(n) = 1 otherwise. (Sequence data often contain ambiguities or gaps.
The definition of the likelihood at a leaf can be extended to accommodate
these as well, and we will address it in section 3).

(2) If nodes ld, d = 1 . . . D are the immediate descendants of an internal node
n then Li(n) =

∏D
d=1

∑
j∈C Qld

i,j(tld ; θ)Lj(ld).
(3) If r is the root node of the tree, then the likelihood for the entire tree is

L(Ds; T , θ) =
∑

i∈C π(i)Li(r).

The pruning algorithm offered the first substantial computational improvement
for evaluating the likelihood function, taking advantage of the recursive nature of
the function. The likelihood for an alignment column is computed by calculating
the partial likelihoods starting at the leaves and working up to the root. For
the tree in Figure 3, the partial likelihoods are computed in the following order:
1, 2,8, 3,10, 4, 5, 6,9, 7,11,12, consistent with the post-order tree traversal order.
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Figure 3. Example tree for recursive likelihood evaluation.

The internal nodes are emphasized in bold, and partial likelihood computations
at these nodes involve summations. Finally, to compute the likelihood of the en-
tire alignment, we recall the assumption that every site in the sequence evolves
independently other sites, and thus:

(3) L(D; T , θ) =
M∏

s=1

L(Ds; T , θ).

Clearly, if two alignment columns are the same, then likelihoods for those columns
are equal. If there are 1 ≤ U ≤ M unique data columns in the alignment, and nu is
the number of the same columns of type u, then, by numbering the unique columns,
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Figure 4. Phylogenetic tree with ambiguous data and its simplification.

1, 2, . . . U ,

L(D; T , θ) =
u∏

s=1

Lnu(Ds; T , θ).

The technique of combining equal data columns in the same class is called alias-
ing. Clearly, in an N sequence alignment there can be at most O(|C|N ) unique
column types. Therefore, for fixed N , computational complexity of likelihood eval-
uations has an upper bound independent of the number of columns (M) present in
the alignment. In other words, when M is small, each new column type is likely to
be unique and hence increase computational complexity linearly. However, as M
becomes larger, it is more likely that a new column is equal to another alignment
column, and thus complexity remains the same.

3. Handling ambiguities in the data.

Sequence alignments often contain ambiguities, i.e. characters which indicate
the presence of one character from a class, for example ‘Y‘ means a pyrimidine
(‘C‘ or ‘T‘) in nucleotide data and is a 2-fold ambiguity. Such characters arise
due to sequencing issues or presence of deletions/insertions. We agree to treat a
deletion/insertion as a |C|-fold ambiguity.

Our substitution models do not include ambiguous states explicitly, but it is
desirable to extract as much information as possible from an alignment column.
One approach would be to eliminate all columns with ambiguities from analysis,
but it seems wasteful, because often only a few sequences contain such characters in
a particular column, and other sequences should not be discarded without thought.

We propose the following technique to extend the definition of partial likelihoods
from section 2: if n is a leaf node, then Li(n) = 1 if i is in the class of characters
referred to by the character labeling n, and Li(n) = 0 otherwise for i in the alphabet
C. For instance: if n is labeled by Y, then LA(n) = LG(n) = 0 and LC(n) =
LT (n) = 1. As an another example, if n is labeled by a deletion/insertion ‘-‘, then
Li(n) = 1 for all i.

As an example of the intuition leading to the above definition consider the trees
in Figure 4. As we will see next, the likelihoods of both trees are the same, and
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hence it makes good sense to treat a deletion/insertion simply as a missing species.
Consider, for example, the partial likelihood at node 6, at the end of branch b6

Li(6) = Q5
i,T (t5; θ)

∑
j∈C

Q4
i,j(t4; θ).

Since Q4 is a transition probability function, the sum evaluates to 1 and

Li(6) = Q5
i,T (t5; θ),

which is precisely the partial likelihood of node 6 in the simplified tree.
Thus, the presence of a deletion/insertion in a sequence at an alignment site

is treated as if that sequence were not present at all, while all sequences with
informative characters are still included in the analysis.

For ambiguities which are not completely uninformative, the extended definition
of partial likelihoods is equivalent to summing over all possible assignments of
characters to ambiguous leaves.

4. Column sorting: Rapid calculation of the phylogenetic likelihood
function.

When likelihood functions for data sets are computed, the same tree and tran-
sition probabilities Qn

i,j(t
n, θ) are used at each column. The same series of partial

likelihood calculations are performed in the same order, differing only in the values
at the leaves (i.e., different columns in the multiple sequence alignment). The total
likelihood is then found by taking the product of all the individual site likelihoods,
as in Eq. (3). Suppose the tree in Figure 3 is used to compute the likelihood using
the following data:

123456 (Sites)
leaf 1 CAACCA
leaf 2 TGGCTG
leaf 3 TGACTA
leaf 4 CGGCCG
leaf 5 CGACCA
leaf 6 CAACCG
leaf 7 GGACAA

In a näıve implementation, six pruning algorithm passes are needed to evaluate
the likelihood function, one for each alignment column, resulting in a total of 30
partial likelihood calculations at the internal nodes. Notice that the total likelihood
does not depend on the order in which the likelihoods of sites were computed.
However, site ordering does affect the number of partial likelihood evaluations.
When the likelihood for the first site is found, all of the partial likelihoods need to
be computed; when we move to the next site, it would be desirable to reuse some
of the partial likelihoods from the previous step if possible. The partial likelihood
for node n can be reused (i.e., its value is unchanged from that of the previously
computed column) whenever all the leaves that are descendants of node n are
identical to the corresponding leaves at the prior site. For example, in moving from
site 1 to site 2 in the sample data, all the leaves are changed except for leaf 7. Thus,
partial likelihoods for all internal nodes must be reevaluated. The transition from
site 2 to site 3 preserves leaves 1,2,4,6, thus the values for one internal node (8)
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can be kept from the previous step. The next three steps entail the reevaluation of
partial likelihoods for all internal nodes except at node 9 for the transition from site
4 to site 5. Consequently, for the entire data set we perform 28 partial likelihood
evaluations for internal nodes, a savings of two partial likelihood evaluations.

It is clear from the data that sites 1 and 5 are quite similar, and the number
of partial likelihood evaluations could be decreased by rearranging the sites as
1,5,2,3,6,4. Following this reordering, in going from column 1 to column 5 the
partial likelihoods at only two internal nodes (11 and 12) must be recomputed, and
only three (9,11 and 12) are updated upon going from column 3 to column 6. The
total number of internal node computations for the entire data set is now 25. Real
data sets may consist of hundreds of sites and the trees can easily grow to have tens
or even hundreds of leaves. For a large data set it would clearly be quite beneficial
to arrange the sites in such a way as to maximize the number of reusable partial
likelihoods, if such an arrangement can be found without excess computation.

4.1. Suboptimal Column Sorting. Consider a fixed tree and a transition prob-
ability function for each branch, with the transition probabilities assumed equal
across all M alignment columns (i.e., no site-to- site rate heterogeneity. Site-to-site
heterogeneity [Yang, 1993] (used in models of Chapter 2), and spatial rate cor-
relation [Feslenstein and Churchill, 1996] models compute a series of conditional
likelihoods and for each such evaluation and our column ordering approach applies
directly). Denote the set of characters at alignment position c as sc : 1 ≤ c ≤ M .
The question of optimal ordering of the columns can now be rephrased as: find the
permutation of indices c, so that the number of partial likelihood evaluations for the
internal nodes is minimized. As we will show, this question is reducible to finding
the shortest Hamiltonian path in a complete Euclidean graph (i.e. the Traveling
Salesman Problem).

4.1.1. A metric for state vectors. Define SC
N to be the set of vectors of length N

with integer entries taking values between 1 and C. This set can also be thought of
as the set of strings of length N over an alphabet with C characters. In the current
context, N is the number of sequences in the alignment, while C is the number of
alphabet characters (C = 4 for nucleotide sequences).

For a given tree T with N leaves and two observed state vectors s1 and s2 from
SC

N , we agree to call an internal node n of the tree T tainted with respect to (s1, s2) if
at least one of the leaves descendant from n is different in s1 and s2. In other words,
if we consider the subtree rooted at the internal node n, the leaves in columns s1

and s2 are not identical in the subtree.
The distance function dT (s1, s2) is defined for any two state vectors of length N

as
dT (s1, s2) =

∑
tainted nodes n

number of children of n.

Note that for strictly bifurcating trees

dT (s1, s2) = 2× (number of tainted nodes),

and for unrooted bifurcating trees, which are typical in phylogenetic analyses, when
time reversible models are used - see section 5.3 for more details -

(4) dT (s1, s2) = 2× (number of tainted nodes) + 1.
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Indeed, an unrooted bifurcating tree can be viewed as a rooted tree, where all
internal nodes except for the root have two children and the root has three, as in
Figure 3 - thus the extra term.

Intuitively, the metric is simply the number of branches in the tree for which
partial likelihoods from s1 cannot be reused when evaluating the likelihood of s2.

To show that the function dT (s1, s2) defines a metric on the set of state vectors
SC

N , we verify that it satisfies the three metric axioms. For every s1, s2, s3 ∈ SC
N

(1) dT (s1, s2) = 0 ⇔ s1 = s2 - this property is obvious,
(2) dT (s1, s2) = dT (s2, s1) - clearly true,
(3) dT (s1, s2) ≤ dT (s1, s3) + dT (s3, s2).

This property follows from the fact that for any 3 state vectors s1, s2, s3,
the number of differences between s1 and s2 is not greater than the sum of
the number of differences between s1 and s3 and s2 and s3.

Clearly, the calculation of dT (s1, s2) can be accomplished by one post-order
traversal of the tree and thus in time O(N), recalling that N is the number of
aligned sequences. Assuming that sites i and j differ in at least one position, one
way to compute dT (si, sj) is as follows:

// Leaf labels are characters from the appropriate column of the
// alignment

distance := 0;
treeNode := first node in post-order traversal;

WHILE (treeNode is not the root) DO
IF treeNode is a leaf THEN

IF leaf label at site i is different from label at site j THEN
mark parent of treeNode as tainted

END IF
ELSE

IF treeNode is marked as tainted THEN
distance := distance + number of children of treeNode
mark parent of treeNode as tainted

END IF
END IF
treeNode := next node in post-order traversal
END WHILE

distance := distance + number of children of the root

4.1.2. Reduction to a graph traversal problem. Let us return to the example of the
opening section and rephrase the problem of optimal column ordering in graph
theoretical terms. Construct the complete graph G (which has a graph-theoretical
name: K6), with vertices corresponding to the columns (state vectors) in the se-
quence alignment and the length of the edge between two vertices si and sj given
by dτ (si, sj). The distances between vertices (columns of data) are collected in the
following triangular matrix:
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Figure 5. Graph G.

dτ (s1, s2) s1 s2 s3 s4 s5 s6

s1 − 11 11 9 5 11
s2 − 9 11 11 9
s3 − 11 11 7
s4 − 9 11
s5 − 11
s6 −

The distances from this table can be easily related to the ‘costs‘ used in the
opening example by means of Eq. (4).

The task of computing the likelihood of all columns can be thought of as the
task of traversing the graph G in Figure 5, visiting each vertex exactly once (i.e.
traversing a Hamiltonian path). The total length of the path indicates the total
number of partial likelihood calculations, and we seek to minimize it. Any permu-
tation of column indices defines a new path in the graph in an obvious way. For
example, the lengths of the trivial path

s1 7→ s2 7→ s3 7→ s4 7→ s5 7→ s6

is

dτ (s1, s2) + dτ (s2, s3) + dτ (s3, s4) + dτ (s4, s5) + d(s5, s6)
= 11 + 9 + 11 + 9 + 11 = 51.

On the other hand, the path

s1 7→ s5 7→ s4 7→ s3 7→ s6 7→ s2

has length 5 + 9 + 11 + 7 + 9 = 41.

4.1.3. An algorithm for finding a suboptimal Hamiltonian path. The traveling sales-
man problem (TSP) is solved by finding the minimal Hamiltonian cycle in the graph.
TSP has a history of interest to researchers working in combinatorial optimization.
Unlike other problems whose general solutions were developed in the theory of lin-
ear programming during the early 1950’s, the TSP was stubborn in its worst-case
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difficulty, and was thought to be fundamentally hard. This suspicion was confirmed
shortly after the definition of an equivalence class of NP-hard problems known as
NP-complete in the early 1970’s and the subsequent identification of the TSP as
an NP-complete problem [Karp, 1972]. Fortunately, many approximating methods
and techniques for ’good’ suboptimal solutions to the TSP have been identified.

A well known approximation technique uses the Minimal Spanning Tree (MST)
and the triangle inequality to construct a cycle which is within a factor of two to
the minimal Hamiltonian cycle. The proof of this assertion can be found in many
graph theory books. An accessible presentation may be found, for instance, in
[Gibbons, 1985].

4.1.4. Algorithm for constructing a suboptimal Hamiltonian path. The algorithm
proceeds in two stages:

(1) Find a MST M of the graph G. (e.g using Prim’s algorithm; see below)
(2) Conduct a pre-order traversal of M, outputting the vertices of the tree in

the order they were traversed.
The resulting ordering of vertices is the desired suboptimal path.

4.1.5. Algorithm for constructing a MST. Prim’s algorithm for constructing the
MST is described in detail in [Gibbons, 1985]. The outline of the algorithm is as
follows:

(1) Choose the longest edge (breaking ties arbitrarily) in G and add both of its
vertices to the set V .

(2) Repeat the following three steps until all vertices of the graph are in V :
(a) Choose the shortest edge e between a vertex in the set V and a vertex

not in V (again, breaking ties arbitrarily).
(b) Add the edge e to the MST
(c) Add the vertex upon which e is incident to V .

Prim’s algorithm has running time O(M2), where M = |G| = number of columns
in the data. There are several alternative algorithms for constructing a MST, how-
ever none of them offer a speed advantage over Prim’s algorithm when applied to
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a complete graph [Cheriton and Tarjan, 1972]. Note that there is a well known
approximate algorithm for solving TSP on graphs whose edge lengths the trian-
gle inequality [Christofides, 1976] which gets within a factor of 3

2 of the optimal
solution, and it can be used instead of the above heuristic. However, the over-
head required of that method is O(M3) and is prohibitive for data sets with many
sequences.

An application of Prim’s algorithm to the graph G in Figure 2 starting with
vertex 1 yields the MST pictured in Figure 3. The suboptimal path constructed by
using this tree is

1 7→ 5 7→ 4 7→ 3 7→ 6 7→ 2

of total length 41, a computational reduction of approximately 20% from the un-
sorted data value of 51. For this simple example, it can be shown by exhaustive
search that this path is actually an optimal one.

4.1.6. The modified pruning algorithm. In order to make use of the column sorting
process, a few slight modifications must be made to the pruning algorithm. First of
all, all partial likelihoods of internal nodes must be stored between the evaluations
of two successive columns. This requirement isn’t too stringent, since the pruning
algorithm itself almost requires it. While it is possible to store only a fixed number
of partial likelihoods for an evaluation at a given column (that number will depend
on the maximal number of children at any given node, but not on the size of the
tree), the memory requirement for storing conditional likelihoods is dwarfed by the
amount of space needed to store transition matrices at each node. Additionally,
each internal node must be equipped with a boolean flag, indicating whether the
transition from one site to the next in the data set has tainted the node. There
is a minimal amount of bookkeeping involved, and its cost is negligible relative to
the cost of likelihood evaluation. The following pseudocode fragment illustrates the
logic of the modifications that must be made to accommodate column sorting. The
use of column aliasing is assumed, so the set of columns to be sorted consists only
of one copy of each column type found in the data.

// Assume that the columns have already been sorted
// Leaf labels are characters from the appropriate column of the
// alignment

Use the standard pruning algorithm to compute all
partial likelihoods for column i=1.

FOR i:=2 to (number of columns) DO
treeNode := first node in post-order traversal
WHILE (treeNode is not the root) DO
IF treeNode is a leaf THEN

IF label at site i is different from label at site i-1 THEN
relabel treeNode with the appropriate sequence character
mark parent of treeNode as tainted

END IF
ELSE

IF treeNode is marked tainted THEN
compute the vector of partial likelihoods at treeNode
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mark parent of treeNode tainted
unmark treeNode

END IF
END IF
treeNode := next node in post-order traversal

END WHILE
compute tree likelihood by weighting

partial likelihoods at the root by equilibrium frequencies
update likelihood for the entire data set

END FOR

4.1.7. Time and memory requirements. In order to take advantage of the subopti-
mal column ordering it is necessary to obtain a heuristic solution to the TSP deter-
mined by the data and the tree being analyzed. Typical likelihood-based analyses
involving phylogenetic trees require iterative optimization of the likelihood function
and entail repeated evaluation of the likelihood for different model parameters, but
leave the tree and the data unchanged. Thus, one suboptimal column ordering may
be used to trim off computational costs in hundreds or even thousands likelihood
function evaluations.

The heuristic algorithm given above has computational complexity of O(N |G|2),
where |G| is the number of vertices in the graph G (i.e., the number of distinct
column types in the data) and N is the number of leaves in the tree. The factor
N appears since each distance computation entails comparing values at each leaf
of the tree, and if necessary, traversing the tree upwards from a leaf to the root.
Storage requirements for the column sorting are of order O(|G|2), and the modified
pruning algorithm only requires an extra boolean flag per in each internal node,
and thus is O(N).

4.1.8. Further time saving heuristics. A substantial portion of time in execution
of the pruning algorithm is spent traversing the tree, and further time savings can
be realized by trimming the number of nodes that must be traversed for each site.
This is especially noticeable for bifurcating trees on nucleotide data, where each
partial likelihood evaluation requires at most 15 floating point operations (23 at
the root, if the tree was unrooted), but since the reduction in traversal time offered
below takes very little effort and overhead, it is worthwhile to implement for all
molecular data types.

Consider our example data set with the columns ordered as s1 7→ s5 7→ s4 7→
s3 7→ s6 7→ s2. Moving from site 1 to site 5, only the last leaf changes, so the
traversal of the tree in the pruning algorithm can be started at that last leaf (because
everything else in the tree is unchanged). Thus instead of spending time traversing
all seven leaves and five internal nodes, we only need traverse leaf 7 and internal
nodes 11 and 12, i.e. only 1/4 of the tree. The following simple heuristic takes
advantage of the above observation.

We precompute two vectors, Left and Right, of length M−1 where M is the num-
ber of columns in the data. The entries in the vectors are defined as follows: Left(i)
is the first character in columns i and i+1 where the columns differ when scanning
from the left; Right(i) is the index of the first character that differs when scanning
from the right. For instance, for columns s6 = (AGAGAGA), s2 = (AGGGGAG)
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in our example data set (indexed 5 and 6, respectively, after column sorting),
Left(5)=3, Right(5)=7.

If the order of the columns is fixed, then computing vectors Left and Right is
simply a matter of character comparison and can clearly be done in O(NM) time
(recall that N is number of sequences, i.e. the number of characters in each column,
and this calculation only has to be done once per data set. It is clear that the pass
of the pruning algorithm for column i + 1 only needs to look at the leaves between
Left(i) and Right(i) and the internal nodes whose descendants include one of those
leaves. Implementing this reduction is a matter of few simple modifications to the
pruning algorithm described in section 2.4:

\\ Change the body of the FOR loop as follows:

treeNode := Leaf indexed by [Left(i-1)]
WHILE (treeNode is not the root AND

treeNode is not equal to Leaf indexed by [Right (i-1)+1] ) DO
IF treeNode is a leaf THEN

IF leaf label at site i is different from label at site i-1
THEN
relabel treeNode with the appropriate sequence character
mark parent of treeNode as tainted

END IF
ELSE

IF treeNode is marked tainted THEN
compute the vector of partial likelihoods at treeNode
mark parent of treeNode tainted
unmark treeNode

END IF
END IF
lastNode = treeNode
treeNode := next node in post-order traversal

END WHILE
lastNode = parent of lastNode
IF lastNode is marked as tainted THEN

unmark lastNode
END IF
WHILE (lastNode is not the root) DO

compute the vector of partial likelihoods at lastNode
lastNode = parent of lastNode

END WHILE
compute tree likelihood by weighing

partial likelihoods at the root by equilibrium frequencies
update likelihood for the entire data set

Note that this heuristic doesn’t require that the columns be ordered in any
particular way, but the ordering method of this chapter boosts the efficiency of tree
traversals quite a bit. Refer to Table 3 for examples.

4.2. Results.
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Type(N) Sites Seqs. Time Ref. Improved Speedup BEP

Nuc(4) 725 15 .35 293 423 1.44 3.80

Nuc(4) 906 50 1.75 85 160 1.88 1.53

Nuc(4) 483 349 6.4 12.5 64 5.12 0.12

Nuc(4) 1264 500 77.15 3.3 8.1 2.46 0.26

Aa(20) 155 37 0.05 42.1 72.9 1.73 0.03

Aa(20) 98 6 < 0.01 331 363 1.097 0.37

Cod(60) 1716 7 2.35 3.5 4.59 1.31 0.75

Cod(61) 513 23 0.67 2.55 3.9 1.53 0.04

Table 1. Effects of column sorting on computational speed.

4.2.1. Speed gains. We have tested the modified pruning algorithm on nucleotide,
amino-acid, and codon data sets of various dimensions. You may download the files
used for testing from:

http://peppercat.stat.ncsu.edu/~hyphy/pubs/cs/data.tar.gz

Table 1 includes the following information:
Type. Type of the data, i.e. nucleotide, amino acid, or codon. This determines

C (the number of character states): 4 for nucleotides, 20 for amino acids and 61 or
60 for codons (universal or mammalian mitochondrial genetic code). Sites. The
number of distinct data columns (sites) in the data, i.e. the number of vertices in
the graph G. Note that in real data this value is a function of the sequence length
and the rates of evolution in different lineages. Seqs. The number N of sequences
in the data file, which is the same as the number of leaves in the phylogenetic
tree. Time. How long did it take to carry out column ordering (in seconds). Ref.
Number of likelihood evaluations per second, not using the pseudo-optimal ordering,
but using the tree traversal heuristic. Calculations were done on a PowerMac
G4/533 using HY-PHY version .95beta for MacOS X. Likelihood calculations also
involve computing transition probabilities, and thus reflect a real-world speed gain
from column ordering. Improved. Number of likelihood evaluations per second
using the pseudo-optimal ordering and the tree traversal heuristic. Speedup. The
ratio between improved and reference speeds. BEP. Break-even point. The number
of likelihood evaluations per branch required to recover the overhead of performing
the pseudo-optimal ordering. For example, the first entry requires 0.35 seconds
to perform the column ordering. In that same 0.35 seconds, 0.35 × 293 likelihood
evaluations could be performed. In order to allow comparison over trees with
different numbers of taxa, we scale by the number of branches. BEP = 0.35 ×
293/27 = 3.80.

There are two important observations in Table 1. First, the time reduction
brought about by column sorting ranges from a minimum of near 10% to a maximum
of over 80%, reflecting a five-fold improvement in speed. Trees with many sequences
seem to benefit the most from the sorting procedure. Second, it is almost always
worthwhile to sort the columns. Consider finding maximum likelihood estimates
of the model parameters for a given tree/dataset combination. If a branch-by-
branch optimization approach is used, at least one (and most likely many) likelihood
evaluation per branch must be performed. In most cases, less than one evaluation
per branch is needed to justify the time cost of sorting, and the worst case among
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Dataset Natural Sorted FC TLB

1 4.23 2.52 1.29 1.00

2 5.84 3.00 1.33 1.00

3 13.12 2.56 1.26 1.00

4 6.50 2.82 1.22 1.00

5 4.77 2.40 1.62 1.00

6 1.94 1.41 1.28 1.00

7 2.82 1.61 1.22 1.00

8 2.92 1.71 1.30 1.00

Table 2. Quality of Improvement.

these datasets is only four evaluations per branch. Since this overhead is a one-time
cost, column sorting can be recommended as a general implementation practice.

4.2.2. Quality of approximation. An ideal algorithm for likelihood calculations would
reuse already computed partial likelihoods whenever possible, leading to no recalcu-
lations at all. The algorithm outlined in this chapter only reuses partial likelihoods
from the single previous step, and relies on an approximate solution to the TSP to
sort columns. One can easily imagine modifying the sorting algorithm to store the
past two sites, for instance, or even to store the partial likelihoods for all previous
sites. However, such modifications would require additional memory and book-
keeping. It is desirable, though, to explore how much of the available savings our
current method is able to exploit. In Table 2 we examine how well this approach
compares with two possible algorithmic improvements.

Theoretical Lower Bound. [Larget and Simon, 1998] offer an alternative al-
gorithm for reducing the cost of likelihood evaluations that achieves the theoretical
lower bound (TLB). Their software package [Simon and Larget, 2001] implements
this method in practice. This is the absolute minimum number of partial likelihood
evaluations needed for a particular data set and tree. It is calculated predicated
on the availability of every unique partial likelihood at any given time. Unfortu-
nately, this method has a very large memory footprint (especially for amino acid
and codon data), and requires extensive modifications to the pruning algorithm.
While the amount of available memory of modern computers makes large memory
requirements less of a concern, modern system architectures suffer a significant per-
formance hit, when frequent memory accesses outside the fast cache memory are
needed. Furthermore, as Table 2 shows, even discounting computational overhead
involved in [Larget and Simon, 1998], column sorting achieves a factor of about 2
of the TLB with minimal overhead.

Pseudo-optimal ordering with full caching (FC). A second approach for
computational reduction would be to sort the columns optimally, and then save
every partial likelihood computed, rather than caching only those for the previous
column. While offering additional savings in likelihood calculations, this method
will also require substantial additional memory and incur significant overhead for
accessing and retrieving cached likelihoods.

The entries in Table 2 indicate the relative amount of computation required by
each of several improvement methods. For each of the eight data sets, the time for
the Theoretical Lower Bound, TLB is defined to be one. The values for each
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Traversal Cost Reduction %

Dataset Natural Sorted Speedup

1 7.60 23.82 1.04

2 8.46 28.92 1.07

3 8.47 35.45 1.08

4 4.19 13.64 Negligible

5 3.88 35.48 1.05

6 2.27 40.14 1.06

7 1.26 43.37 Negligible

8 0.65 33.14 Negligible

Table 3. Tree traversal cost reduction.

of the other methods reflect the amount of time needed to evaluate the likelihood
function, relative to the TLB for that rows dataset. Natural shows the value for
unsorted columns, Sorted - for columns sorted using the method outlined in this
chapter and FC - for full caching, i.e. when columns are first sorted using the
algorithm in this chapter, but all partial likelihoods are cached, rather than just
those of the prior column.

The values in Table 2 represent the cost of likelihood evaluations in terms of
the metric of this chapter relative to the TLB (defined to be 1.0). It is clear that
both alternative algorithms offer improved calculation times, but the improvement
tends to be relatively small. In time-critical settings, the additional memory and
programming complexity of these algorithms may be justified, but it is pleasing to
see that the simple one-step column sorting method captures much of the available
savings.

4.2.3. Tree Traversal Savings Heuristic. Table 3 shows by how much the heuristic
of section 2.6. reduces the number of nodes traversed by the pruning algorithm
for each tree likelihood evaluation. Traversal cost reduction shows what proportion
of nodes will not be traversed at all. Both the cases of unsorted and sorted (by
this chapter’s algorithm) columns are considered. The simple heuristic saves a
startling amount of time, but only when used in conjunction with column sorting.
Similar savings would be expected if the heuristic was used in conjunction with
either the TLB or FC algorithms. Like column sorting, the use of the heuristic
requires little overhead and only minor changes to the pruning algorithm, so it is
recommended for typical likelihood implementations. The entries in Table 3 show
relative reduction in the number of branches traversed when using the tree traversal
heuristic to compute likelihoods of all data columns. Natural and Sorted refer to
the ordering of data columns. Speedup reflects relative improvement of likelihood
evaluations per second, when the tree traversal heuristic is applied to sorted data
columns.

5. Markov models of substitution.

In the previous section we have discussed construction and efficient evaluation
of likelihood functions in the context of evolutionary sequence analysis. Our next
goal is to model character substitution processes along branches in a phylogenetic
tree.
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Substitution operates in continuous time, which could be either geological time
or some other uniform (across the entire tree) measure of time; and over a discrete
of characters. To complete the definition of our evolutionary model, we must specify
transition probability functions Qb

x,y(tb; θ) defined by Eq. (1) for every branch b
(with length tb) in the tree T . For brevity, we will no longer explicitly mention
dependance on the parameter vector θ in the following discussion.

There are several assumptions we are going to make explicit about the structure
of the transition probability functions.

(1) Substitution processes operate independently from branch to branch.
In principle, a transition probability function of a branch could depend

on the entire evolutionary history from the ultimate ancestor, but use of
such models would render likelihood evaluations unfeasibly complex. While
the independence assumption is almost certainly violated in population
level data, when demographics and non-random mating should be taken
into account, on a larger evolutionary scale, when the data comes from dif-
ferent species, separated by relatively lengthy time intervals, the assump-
tion of independence is not unreasonable.

Moreover, evolutionary processes are Markov, i.e. memoryless along each
branch as well.

(2) Along a fixed branch, the substitution process is time homogeneous.
This property was implicitly used in Eq. (1). The most general transition

probability function would specify, for every t > 0 and s ≥ 0 the probability

Qij(t; s) = Pr{state i at time s → state j at time s + t}.

For a time-homogeneous process the transition probability does not depend
on the starting point, thus

Qij(t; s) = Qij(t; 0) ∀ t ≥ 0, s ≥ 0, i, j ∈ C.

Biologically, this assumption states that during the lifespan of a given
branch (species), the underlying evolutionary process doesnt change with
time. There are models [Thorne et al, 1998] which relax this assumption
at a great computational cost, but even in the present setting, it is possi-
ble to model some changing evolutionary conditions, by splitting a branch
into several shorter ones, each equipped with its own, time-homogeneous
model. This approach would enable us to investigate discrete changes in the
evolutionary process, due to events such as migration, rapid environmental
change etc.

(3) All branch processes share the same equilibrium distributions and are sta-
tionary. Every finite state irreducible Markov process has a unique equi-
librium distribution, i.e. a probability vector {π(k)}, 1 . . . k ∈ C, with the
property that, for every t ≥ 0, the following matrix identity holds

π{Qij(t)} = π.

In other words, if we draw states randomly according to its relative
weights in π, and then run the process for time t, then the resulting dis-
tribution of states is also going to be π. Biologically, the proportions of
characters in the gene pool remain constant over time. It is certainly possi-
ble to relax this assumption, for instance, by allowing substitution processes
along branches to have their own equilibrium frequencies. However then
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the model will imply an instantaneous change is character frequencies at
an internal node, which is not biologically reasonable, since any change in
those frequencies would be gradual, due to accumulation of substitutions.

(4) Sometimes we will also assume that substitution processes are time re-
versible.

A time reversible process (in equilibrium) has the property that for every
t > 0 and i, j ∈ C,

Pr′{j → i in time t} = Pr{j → i in time t},
where we use Pr′ to refer to the transition probability back in time. We
will discuss the implications of this assumption later on.

A discrete state, continuous time Markov process is defined by its rate matrix:

(5) R(s) = lim
t↓0

Q(t; s)− I

t
,

where Q(t; s) is the transition probability function, and I is the identify matrix.
Since Q(t; s) is a transition probability function, for all times, entries of every row
of the matrix Q should sum to 1. Therefore every row of the rate matrix R should
sum to 0. To check that, observe if d = {1, . . . , 1}, then for every s, t

(Q(t; s)− I)dT = 0,

thus
R(s)dT = 0.

and hence, the rows of the rate matrix R each sum to 0. It is customary to define

Rii(s) = −
∑
k 6=i

Rik(s), ∀i,

and denote diagonal entries of the rate matrix by ?.
Let d ∈ R|C| be a distribution vector over the state space C. Its evolution in

time, under the Markov process is the solution to the system of ordinary differential
equations

ḋ(t) = R(t)d(t),
subject to the appropriate initial conditions d = d0.

This relation easily follows from Eq. (5). Indeed,

ḋ(t) = lim
h↓0

d(t + h)− d(t)
h

= lim
h↓0

(Q(h; t)− I)d(t)
h

= R(t)d(t).

For a time homogeneous process, the rate matrix does not depend on time, and
the solution to the system of ODEs is given by

d(t) = eRtd0.

Therefore, the transition probability function for a time-homogeneous discrete
state continuous time Markov process is a matrix exponential of its rate matrix,
which can be computed as

Q(t) = eRt =
∞∑

k=0

Rktk

k!
.

There are a multitude of algorithms for numerical evaluation of matrix exponen-
tials [Moler and Van Loan, 1978], and using a series representation proves to be an
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efficient method, especially for sparse rate matrices, when sparsity can be utilized
for faster matrix multiplications.

The algorithm for numerical matrix exponentiation actually employed by the
author first scales the matrix by 1/K, where K = 2−k, and k is chosen so that the
largest modulus among the entries of the matrix is sufficiently small, then uses the
series representation to evaluate exp(tR/K) with a small number of terms (usually
less than 10), and finally employs the elementary identity exp(tR) = [exp(tR/K)]K

to recover the desired exponential of tR by k repeated squarings of exp(tR/K).

5.1. Evolutionary distances. The ultimate objective of a maximum likelihood
based analysis is to obtain estimates of branch length and substitution model pa-
rameters and interpret their values.

The structure of the transition probability function in Eq. (5), implies that the
likelihood function will depend on the products of functions of model parameters,
and branch lengths tb.

For example, consider the rate matrix for the nucleotide substitution model of
[Hasegawa et al, 1985], commonly denoted as HKY85

? απC βπG απT

απA ? απG βπT

βπA απC ? απT

απA βπC απG ?

 , C = {A,C, G, T},

with (πA, πC , πG, πT ) referring to the equilibrium distribution vector. ‘?‘ is de-
fined as the negative of the sum of all off-diagonal entries in the row.

It has two substitution rates, for transitions - β - and transversions - α. Adenine
and guanine are purines, while cytosine and thymine are pyrimidines. Transitions
are substitutions of chemically similar nucleotides, while transversions are substi-
tutions for a chemically different base, intuitively a less frequent event.

It is clear that the transition probability function of the HKY85 model will de-
pend on the products of αt and βt, and thus it is impossible to estimate evolutionary
time and substitution rates separately, but rather only as products. Of course, if
additional information, such as fossil records, is available, then it may be possible
to resolve the time scale explicitly.

Therefore, distances along a branch in a phylogenetic tree are best thought of
not as physical time, but rather as evolutionary time. Two branches of similar
lengths could represent rapid evolution over a short period of time, or slow change
over extended periods of time.

A commonly used measure of evolutionary distances is the expected number of
substitutions per site per unit time, defined as:

(6) −
k=|C|∑
k=1

π(k)Rkk,

which is simply the average rate of replacing a character with a different one.

5.2. Trivial lineages. Consider a phylogenetic tree which has an internal branch
with a single child. Biologically, it represents a case when an evolutionary process
changes (due to an environmental shift, migration, new species interaction, etc) but
no speciation event occurs - see Figure 7.
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tA

tB

tA+tB

Figure 7. Tree with a trivial lineage.

If the substitution processes on branches A and B are the same, then the trivial
lineage D → B → A will collapse to a single branch as in the simplified tree on
the right in Figure 7. Since the Markov process along both A and B is time-
homogeneous, the Chapman-Kolmogorov equation ([Papoulis, 1984], p.531).

Qij(t + s) =
∑
k∈C

Qik(t)Qkj(s), ∀t, s ≥ 0,

applies.
Indeed, consider computing partial likelihoods for the internal node associated

with the branch D, where A and C could either be leaves, or subtrees:

Li(D) =
∑
j∈C

QC
i,j(tC)Lj(C)

∑
j∈C

QB
i,j(tB)Lj(B).

But,
Lj(B) =

∑
k∈C

QA
j,k(tA)Lk(A),

and hence

Li(D) =
∑
j∈C

QC
i,j(tC)Lj(C)

∑
k∈C

∑
j∈C

QB
i,j(tB)QA

j,k(tA)

Lk(A).

If QA = QB, then the Chapman-Kolmogorov equation applied to the expression
in the brackets, simplifies the partial likelihood to:

Li(D) =
∑
j∈C

QC
i,j(tC)Lj(C)

∑
j∈C

QA
i,j(tA + tB)Lk(A),

which is precisely the expression for the simplified tree with the trivial internal
node collapsed.

If Markov processes along every branch in the tree are the same, it suffices to
consider only evolutionary trees without trivial lineages. However, in a more general
case, when each branch can possibly have its own evolutionary process, different
from neighboring branches, internal branches with a single child must be kept.
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5.3. Reversibility and unrooted trees. When maximum likelihood framework-
was first introduced in [Felsenstein, 1981], each additional branch in the phyloge-
netic tree caused a significant strain on computing equipment of the day. As we will
show next, assuming that all substitution processes operating along tree branches
are reversible, allows one to collapse one branch in the tree - Felsenstein called this
the ‘Pulley Principle‘. While modern computing equipment no longer requires this
simplification, it remains in place for historical reasons, and because non-reversible
models, while more parameter rich, often do not offer a significantly better fit than
reversible models do.

For a Markov process to be reversible, it must be stationary, i.e. be in an
equilibrium distribution of states, and the following identity about transition rates
must hold:

Pr′{j → i backwards in time t} = Pr{j → i in time t}
However, it suffices that the following condition be satisfied,

π(i)Rij = π(j)Rji, i, j ∈ C.

Indeed, by Bayes’ rule:

Pr′{j → i backwards in time t} =
Pr{j → i in time t}π(i)

π(j)
= Pr{j → i in time t}.

It follows that a similar identity holds for the transition probabilities, as well:

π(i)Qij(t) = π(j)Qji(t), i, j ∈ C, t ≥ 0

Consider the tree in Figure 8, where A,B and C can be either leaves or subtrees.
Also assume that the processes along branches D and C have the same transition
probability functions. The likelihood of the the data column Ds given tree T is:

L(Ds; T , θ) =
∑
i∈C

π(i)Li(r)

=
∑
i∈C

π(i)
∑
j∈C

QD
i,j(tD)Lj(D)

∑
k∈C

QC
i,k(tC)Lk(C)

=
∑
j∈C

∑
k∈C

(∑
i∈C

π(i)QC
i,k(tC)QD

i,j(tD)

)
Lj(D)Lk(C)

By reversibility:
π(i)QC

i,k(t) = π(k)QC
k,i(t),

and hence, using Champan-Kolmogorov equation and the assumption QC = QD:∑
i∈C

π(i)QC
i,k(tC)QD

i,j(tD) = π(k)
∑
i∈C

QC
k,i(tC)QD

i,j(tD) = π(k)QC
k,j(tC + tD)

Therefore:

L(Ds; T , θ) =
∑
k∈C

π(k)Lk(C)
∑
j∈C

QC
k,j(tC + tD)Lj(D)

This expression is exactly the likelihood of the ‘unrooted‘ tree in Figure 8. If
we treat node C as the root, and add D to the the list of children of C, then the
equivalence of both trees follows from our definition of the likelihood function, and
the unrooted tree has one less branch, as promised.
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Figure 8. A tree and its unrooted equivalent.

Note that our argument allows us to place the root at any branch of the tree,
splitting it into two arbitrary parts. This conclusion is rather intuitive: reversible
models don’t provide the sense of the origin of time, because the past and the future
are interchangeable.

5.4. A note on multinomial distributions. Any model of the type described
in the previous sections will be a particular case of the multinomial model on data
column types. Indeed, for N sequences there will be |C|N possible column types,
if we ignore ambiguities in the data for the moment. The probability of observing
a particular kind of column with our Markov models will be a function solely of
observed data, given model parameter values. Moreover, the likelihoods of column
types ct form a probability distribution on CN . The sum of likelihoods of all possible
column types as defined in section 1 is always equal to 1 for any phylogenetic tree
and transition probabilities.

As an illustration, consider the tree in Figure 2, whose likelihood is shown in
Eq. (2). If we sum over all possible |C|5 column types, using wi to denote the label
of leaf i, we obtain the following expression:

∑
w1∈C

∑
w2∈C

∑
w3∈C

∑
w4∈C

∑
w5∈C

L (Ds; T , θ) =
∑

w1∈C

∑
w2∈C

∑
w3∈C

∑
w4∈C

∑
w5∈C∑

c9∈C

∑
c8∈C

∑
c7∈C

∑
c6∈C

π(c9)Q1
c9,w1

(t1; θ)Q8
c9,c8

(t8; θ)Q2
c8,w2

(t2; θ)×

Q7
c8,c7

(t7; θ)Q3
c7,w3

(t3; θ)Q6
c7,c6

(t6; θ)Q4
c6,w4

(t4; θ)Q5
c6,w5

(t5; θ)

Rearranging the order of summations to sum over the leaves first we arrive at:∑
c9∈C

∑
c8∈C

∑
c7∈C

∑
c6∈C

π(c9)
∑

w1∈C
Q1

c9,w1
(t1; θ)Q8

c9,c8
(t8; θ)

∑
w2∈C

Q2
c8,w2

(t2; θ)×

Q7
c8,c7

(t7; θ)Q6
c7,c6

(t6; θ)
∑

w3∈C
Q3

c7,w3
(t3; θ)

∑
w4∈C

Q4
c6,w4

(t4; θ)
∑

w5∈C
Q5

c6,w5
(t5; θ)

Because Q5 is a transition probability function∑
w5∈C

Q5
c6,w5

(t5; θ) = 1.
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Just like the innermost sum, all other sums collapse to 1, right to left, until all
that remains is: ∑

c9∈C
π(c9),

which also evaluates to 1, because π is a probability distribution.
Therefore, we can define the multinomial distribution generated by our evolu-

tionary model as:
Pr{x = w} = L(w; T , θ), w ∈ CN .

Therefore, for data without ambiguities, the upper bound on the likelihood function
for any data set is given by the likelihood assigned to the same data set by the
multinomial distribution with the maximum likelihood parameter values estimated
by observed proportions of data column types.

5.5. Non-deterministic model parameters. As the models of the next chapter
will illustrate, it is often beneficial to let some model parameters be random quan-
tities, to account for variation in some evolutionary properties among alignment
sites. We partition the vector of parameters θ into a deterministic θd and random
θr, components, where θr drawn from the distribution function F (x, η) (η is the
vector of distribution parameters), then the log likelihood of an alignment site is
given by:

L(Ds; T , θd, η) = Eθr [L(Ds; T , θd, η, θr)] =
∫

L(Ds; T , θd, η|θr = x)F (dµ(x), η),

with conditional likelihoods evaluated as described in section 1. µ is either the
Lebesgue measure, for continuous distribution, or the counting measure for the dis-
crete densities, i.e. for discrete random variables the expectation integral becomes
a sum.

6. Hypothesis testing.

One of the major advantages to using maximum likelihood frameworkfor se-
quence analysis is the ability to rigorously test statistical hypotheses. Hypotheses
fall into two different classes: nested and non-nested.

Two hypotheses are nested if the parameter space for the models used in the null
hypothesis H0 is a subset of the parameter space for the models in the alternative
hypothesis HA. Most commonly, the null hypothesis can be obtained by imposing
a finite set of constraints on the model parameters in the alternative hypothesis,
i.e. θ0 = g(θA), where g is the constraint function. g reduces the n-dimensional
space of alternative model parameters to an n − d dimensional space. Clearly, a
more general model will yield a larger maximum likelihood value, and as it turns
out the convenient quantity to characterize the significance in the likelihood score
improvement is the likelihood ratio test statistic defined as:

LRT = 2(log LHA
− log LH0)

If the likelihood function is sufficiently nice, i.e. has continuous second deriva-
tives with finite means, maximum likelihood estimates of model parameters are
consistent, and the constraints imposed by g do not lie on the boundary of the
parameter space, then, under H0, the LRT is distributed as χ2 with d degrees of
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freedom when the sample size is large (see, for instance, [Schervish, 1997], pp. 459-
461). We can use this result to assess the probability that, given H0, a random
LRT value is greater than the observed value X:

PrH0{LRT ≥ X} = 1− Pr{χ2
d < X}

This probability is referred to as the p-value . A small p-value indicates that it
is unlikely to have observed a LRT value as large or larger than X, and therefore
H0 should be rejected in favor of HA.

Another method to assess a likelihood score improvement, applicable even in the
case of non-nested models, is the Akaike Information Criterion (AIC) [Akaike, 1974].
AIC rewards a model for good fit, but penalizes it for each additional independently
adjusted parameter:

AIC = −2(log L−# of estimated model parameters).

A model with the lowest AIC score should be accepted. The logic behind using
an information criterion is quite instructive. Let Y denote a random quantity
whose true distribution is described by the density g(y) (in the discrete case, the
density is understood as the Radon-Nykodim derivative of the distribution function
with respect to the counting measure). Let f(y; θ) represent a parametric family
of densities used to model the quantity Y . In many practical cases, the family f
does not contain the true density g. There are many possible ways to measure how
well f(y; θ) approximates g(y), and we shall use the Kullback-Leibler information
defined by

IKL(f(·; θ); g) = EY

[
log

g(Y )
f(Y ; θ)

]
.

It can be shown [Schervish, 1997] that IKL(f(·; θ); g) ≥ 0 and the equality is
attained if and only if f(y; θ) = g(y) almost surely. Assuming the existence of all
necessary expectations, we write:

IKL(f(·; θ); g) = EY [log g(Y )]− EY [log f(Y ; θ)] .

When comparing among different models, we wish to minimize the Kullback-
Liebler information. However it is often impossible obtain the first term of the
above expression, because the true distribution is unknown. However, to compare
two proposed parametric families f and h, we can utilize the difference in their
respective KL information, which does not include the term with the unknown
‘true‘ distribution.

For any fixed θ, by the law of large numbers:

1
N

N∑
i=1

log[f(Yi; θ)] →a.s. EY [log f(Y ; θ)] ,

if Yi are independent and identically distributed. However, if we use maximum
likelihood to first estimate the parameters of the distribution θ̂ and then use those
to approximate the KL information, a bias is introduced (i.e. we overestimate the
information term). It can be shown [Akaike, 1974], that under certain regularity
conditions, the bias thus introduced amounts to:

E

[
IKL(f(·; θ̂); g)− 1

N

N∑
i=1

log[f(Yi; θ̂]

]
=

k

N
,

where k is the number of independently adjusted parameter in θ.
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If all else fails, one can always resort to bootstrap to generate empirical distri-
butions of a test statistic and use those to accept or reject hypotheses.

7. Bootstrap.

In order to assess statistical significance of a test it is often necessary to know the
(approximate) distribution of a test statistic, most commonly - the likelihood ratio
test statistic. Except for the asymptotic χ2 large sample distribution for nested
hypotheses, the LRT distribution can not be obtained analytically.

It is therefore common to utilize the general bootstrap procedure described by
[Efron, 1979], adapted for phylogenetic setting in [Goldman, 1993]. One uses ei-
ther parametric or non-parametric resampling procedures to generate i.i.d. samples
of sequence data, and tabulates the distribution of the test statistic using those
samples. We will now briefly describe the bootstrap procedures.

7.1. Non-parametric bootstrap. Given a data set of N sequences of length
M , we use sampling with replacement to generate new data sets. Clearly, non-
parametric is a misnomer, because the distribution that new sites are being sampled
from is simply the multinomial distribution discussed in 5.4. Indeed, the probability
of drawing a site Ds is the observed proportion of this type of sites in the original
data set. The issue with non-parametric bootstrap in this setting is that unless
the number of sequences M is quite large, an overwhelming majority of possible
column types Ds do not appear in simulated data sets, because they are not present
in the original sample. In other words, we are utilizing the multinomial distribution
with |C|N − 1 parameters estimated with only M � |C|N − 1 observations, and the
quality of such approximation is dubious.

7.2. Parametric bootstrap. With parametric bootstrap [Efron, 1979], the dis-
tribution function used to generate sites in simulated data sets is the one obtained
from the Markov evolutionary models described earlier in this chapter. The algo-
rithm for simulating a data set parametrically, using only a uniform on [0, 1] random
number generator, proceeds as follows.

(1) Repeat steps 2-5 M times (for each column in the alignment)
(2) If some of the model parameters are random, we sample values for each

such parameter from its distribution, using the probability transform -
F−1(y), y ∼ U(0, 1), where F is the cumulative distribution function for the
random parameter - to generate values from the appropriate distributions.

(3) Draw a character state cr ∈ C at the root of the tree T from the equilibrium
distribution π, by taking a random number z ∼ U(0, 1) and setting cr = i-th
element of C, where i is the smallest positive integer such that

∑i
k=1 π(k) ≥

z.
(4) For each internal node n, starting with the root and proceeding down the

tree, and each branch b emanating from n determine the character at the
end of branch b thus:
(a) Draw a random number y ∼ U(0, 1).
(b) Since the state at node n (denoted by cn) is known, we use the prob-

ability transition function at node n, Q̂n(t̂n, θ̂) (hats mean that we
evaluate transition probabilities using maximum likelihood estimates
for parameter values) to set the character at the end of branch n to
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the i-th element of C, where i is the smallest positive integer such that∑i
k=1 Q̂n

cn,k(t̂n, θ̂) ≥ y.
(5) Simulated alignment column can now be constructed by reading off the

values at tree leaves.
The main issue with parametric bootstrap arises when the evolutionary model

is poorly chosen, in which case resampled data may yield misleading statistical
properties, because they don’t characterize true evolutionary properties well.
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