

Compartmentalization detection

Selene Zárate

Viruses and compartmentalization

- Virus infection may establish itself in a variety of the different organs within the body and can form somewhat separate viral populations, driven to adapt to their particular environments and subjected to different selective pressures
- Virus populations can become isolated from each other, if trafficking and gene flow between viral subpopulations is significantly restricted, then each subpopulation can become genetically distinct from others, i.e., compartmentalized.

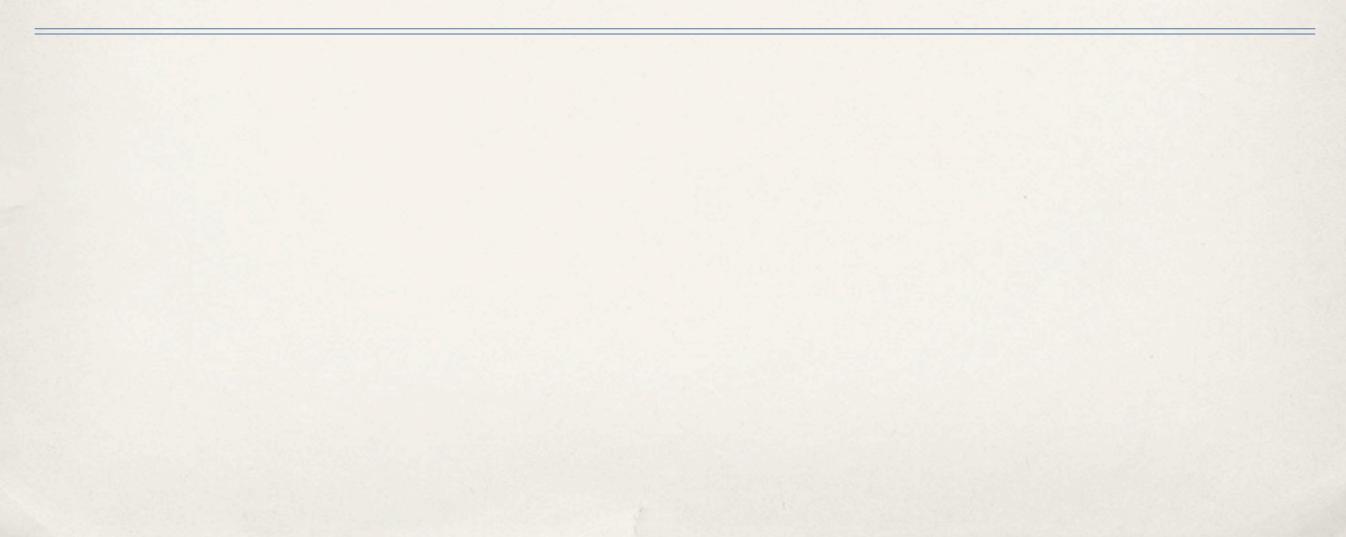
Compartmentalization

- Compartmentalization has been defined in different ways:
 - as genetic heterogeneity between subpopulations
 - * as the result of independent micro-evolution
 - as the result of restricted viral gene flow
 - * as the presence of distinct but phylogenetically related genotypes.
- In HIV, compartmentalized viral populations have been shown to possess distinct phenotypic characteristics, such as cellular tropism, drug resistance, and level of pathogenesis.

How to determine population structure?

- * A population is considered structured if:
 - genetic drift is occurring in some of its subpopulations
 - migration does not happen uniformly throughout the population
 - mating is not random throughout the population.
- A population's structure affects the extent of genetic variation and its patterns of distribution.

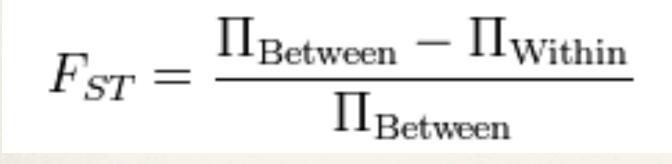
Standard Genetic Parameters for Population Diversity Analysis


- Allele richness (A)
- Effective number of alleles [AE=1/(1-HE)]
- Observed heterozygosity(H0)
- Expected heterozygosity(HE)
- Fixation Index (FIS)
- Within-population gene diversity (HI)
- Mean within-population gene diversity (Hs)
- * Total diversity (HT)
- Coefficient of gene differentiation among populations (GST)

Methods used to detect virus compartmentalization

* Distance-based: F_{ST}, nearest neighbor.

Tree-based: Slatkin-Maddisson, Association Index, Correlation coeficients


Distance based methods

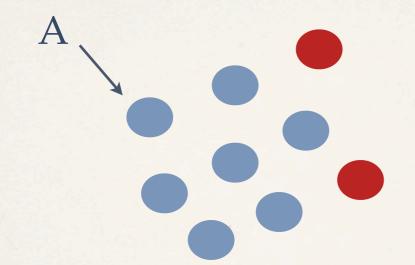

Wright's measure of population subdivision: F_{ST}

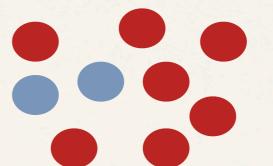
- Compares the mean pairwise genetic distance between two sequences sampled from different compartments to the mean distance between sequences sampled from the same compartment.
- Statistical significance is derived via a population-structure randomization test.

Fst score

When the differences between compartments is much larger than the differences within compartments, the values of F_{ST} approaches 1. Therefore values of F_{ST} close to 1 indicate compartmentalization

Distance within subpopulation = 14/36 = 0.39Distance between subpopulation = 53/81=0.65


 $F_{ST} = (0.65 - 0.39)/0.65 = 0.4$

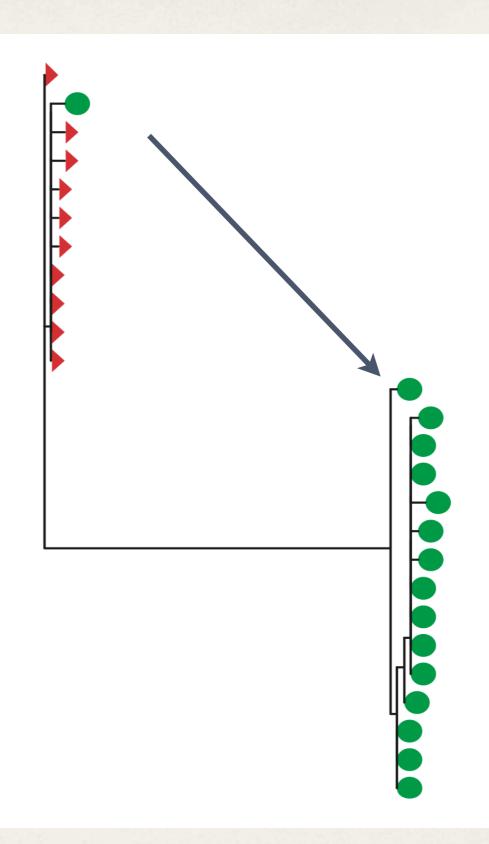

Nearest-neighbor statistic (S_{nn})

 Is a measure of how often the nearest neighbors of each sequence were isolated from the same or different compartments. The distance between sequences is measured using the TN93 metric (not the number of sites in which two sequences differ, as in the original description).

$$S_{nn} = \sum_{j=1}^n X_j / n.$$

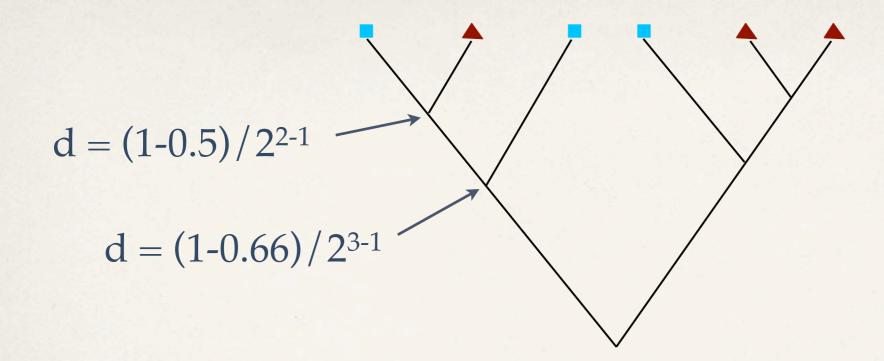
 where Xj is 1 if the nearest neighbor was isolated from the same subpopulation or 0 otherwise.

$$S_{nn} = \sum_{j=1}^n X_j / n.$$


Sequence A was isolated from one subpopulation, 6 of its nearest neighbors are from the same population and 2 are not, its contribution to Snn is 6/9Snn= (14(6/9) + 4(1/9))/18 = 0.54

Tree-based methods

Slatkin-Maddison (SM)


- Determines the minimum number of migration events between the separated populations consistent with the structure of the reconstructed phylogenetic tree.
- Statistical support is based on the number of migration events that would be expected in a randomly structured population, derived by permuting sequences between compartments.

In the phylogeny shown here, one migration event explains the distribution of the sequences in the topology. The more migration events needed to explain the distribution of sequences the compartmentalization hypothesis becomes less likely

Simmonds association index (AI)

* Assesses the degree of population structure in the phylogenetic tree by weighting the contribution of each internal node based on its depth in the tree (progressively less for nodes near the root) and evaluating the significance of the observed value using a bootstrap sample both over the structure of the population and the shape of the phylogenetic tree.

At each node determine the number of sequences below it (n), and the frequency of the most frequent variant (f), and calculate $d = (1-f)/2^{n-1}$.

The AI is calculated as the ratio between the mean score of 100 bootstrap replicates, and the mean of 10 sample reassigned controls

The smaller the score, the more likely the population is compartmentalized

Correlation coefficients (r, r_b)

- Correlation coefficients are a way to correlate distances between two sequences in a phylogenetic tree with the information about whether or not they were isolated from the same compartment.
- The distance between two sequences can be either the number of tree branches separating the sequences (r_b) or the cumulative genetic distance between the sequences (r).
- To assess whether the computed coefficient was statistically significant, we estimated the distribution of these coefficients by permuting sequences between compartments. A P value of 0.05 or less was considered statistically significant.

How these methods compare

$p0 = f_{yy} + f_{nn}$
$pe = (f_{yy} + f_{yn})^*(f_{yy} + f_{ny})$
$+ (f_{nn} + f_{ny})^*(f_{nn} + f_{yn})$

 $\kappa = (p0 - pe)/(1 - pe)$

TABLE 2. Levels of agreement between methods as measured by pairwise κ scores				
Comparison		к		
Comparison	CNS	FGT ^a	Simulations	
Different-class methods				
SM vs F_{ST}	0.62	0.35	0.46	
SM vs S_{nn}	0.66	0.52	0.77	
SM vs AMOVA	0.09	0.14	0.36	
AI vs $F_{\rm ST}$	0.56	0.29	0.44	
AI vs S_{nn}	0.58	0.44	0.67	
AI vs AMOVA	0.05	0.17	0.35	
Same-class methods				
SM vs AI	0.48	0.44	0.67	
$F_{\rm ST}$ vs S _{nn}	0.48	0.35	0.43	
$F_{\rm ST}$ vs AMOVA	0.03	0.11	0.80	
S_{nn} vs AMOVA	0.05	0.14	0.43	
$r vs r_b$	0.67	0.66	0.68	

^a FGT, female genital tract.

Zárate 2007. J. Virol: 81(12)

Biased sample sizes

TABLE 5. Proportion of simulated data sets classified as compartmentalized when equal and different sample sizes are drawn from the compartments^a

Mathed		Proportion classified as compartmentalized when sample sizes were:		
Method	Equal $(n = 20)$	Skewed $(n = 5 \text{ and } 20)$		
SM	0.98	0.27		
$F_{\rm ST}$	0.55	0.33		
S _{nn}	0.99	0.59		
AI	0.85	0.37		
AMOVA	0.41	0.24		
r ^b	0.54	0.04		
r_b^c	0.71	0.19		

^a A migration rate of 0.0005 migrations per generation was used to simulate both data sets.

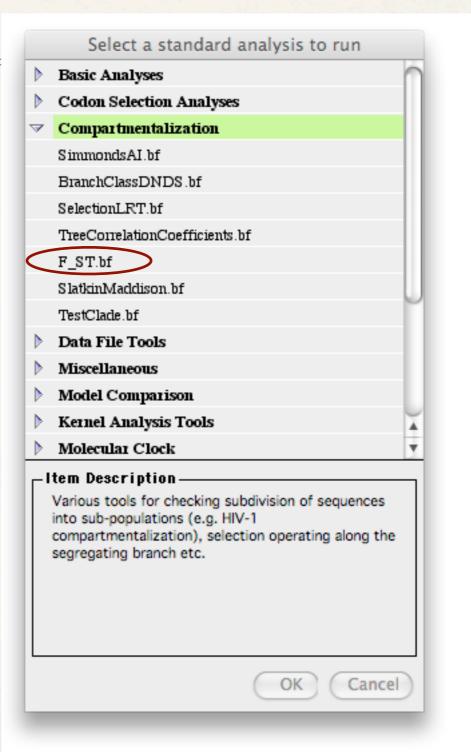
^b r, correlation coefficient by length of branches.

 c r_{b} , correlation coefficient by number of branches.

Zárate 2007. J. Virol: 81(12)

A tour around HYPHY

A quick example:


- Lets take two sets of data, one group of HIV sequences* derived from either plasma or female genital tract (A), and a second data set⁺, with samples derived from plasma or CSF (B).
- We aligned the sequences and reconstructed the phylogeny in order to carry out the compartmentalization analysis

*Kemal, PNAS:100(22).

+Gatanaga, Arch. Virol. :144(1).

Starting an analysis

- * Open the "Standard analysis" menu and select **Compartmentalization**.
- * We will start with an F_{ST} analysis.
- * You will need:
 - A sequence alignment
 - A distinct label in the sequence name for each compartment
 - A substitution model

Distance Co	omputation
istance formulae	
ull likelihood	
Load Matrix	
-Item Description	
	distance measures based
Use one of the predefined on data comparisons. Fast.	
1 required (1 chosen).	OK Cancel

Distance Computation	Data type
Distance formulae	Nucleotide/Protein
Full likelihood	Codon
Load Matrix	
-Item Description	
Use one of the predefined distance measures based	Item Description Nucleotide or amino-acid (protein).
on data comparisons. Fast.	
1 required (1 chosen). OK Cancel	1 required (1 chosen). OK Cancel

Distance Computation		Data type		
Distance formulae	Nucleotide/Protein			
Full likelihood	Codon			
Load Matrix				
_Item Description	Item Description	n		
Use one of the predefined distance measures based on data comparisons. Fast.	Nucleotide or amin			
1 required (1 chosen). OK Cancel	1 required (1 chose		Please choose a nucleotide	or amino-acid data file:
			Name	Date Modified
		DEVICES DALEK		Jul 31, 2000 12.11 11
		iDisk	WC26_aln	Jul 31, 2006 12:47 PM Jul 31, 2006 12:47 PM
		DALEK	WC25_aln WC23_aln	Jul 31, 2006 12:47 PM
		DALER	WC22_aln	Jul 31, 2006 12:47 PM
		► SHARED	WC21_aln	Jul 31, 2006 12:47 PM
		▼ PLACES	WC19_aln	Jul 31, 2006 12:47 PM
		Applicati	WC18_aln	Jul 31, 2006 12:47 PM
		Desktop	WC17_aln	Jul 31, 2006 12:47 PM
		👚 selene	WC16_aln	Jul 31, 2006 12:47 PM
		Documents	WC15_aln	Jul 31, 2006 12:47 PM
		Downloads	WC28_tree	Eeb 14, 2006 1:54 PM
			WC27_tree	Feb 14, 2006 1:53 PM
			Enable: All Documents	•
				Cancel Open

Read the following data:9 species:{WC15_cvl,WCC5_cvl_2,WC15_cvl_3,WC15_cvl_4,WC15_cvl_5,C15_pl_WC15_pl_2,WC15_pl_3,WC15_pl_4}; Total Sites:1269; Distinct Sites:41

Enter a regular expression to define the first clade:

Read the following data:9 species:{WC15_cvl,WC(5_cvl_2,WC15_cvl_3,WC15_cvl_4,WC15_cvl_5,(C15_pl,WC15_pl_2,WC15_pl_3,WC15_pl_4}; Total Sites:1269; Distinct Sites:41

Enter a regular expression to define the first clade:

Enter a regular expression to define the first clade:cvl

Enter a regular expression to define the second clade:pl

Clade 1 includes 5 sequences:

WC15_cvl_2 WC15_cvl_2 WC15_cvl_3 WC15_cvl_4 WC15_cvl_5

Clade 2 includes 4 sequences: WC15_pl WC15_pl_2 WC15_pl_3 WC15_pl_4

Is this partitioning correct (y/n)y

Proportion of sequence in population 1: 0.555556 Proportion of sequence in population 2: 0.444444 Read the following data:9 species:{WC15_cvl,WC(5_cvl_2,WC15_cvl_3,WC15_cvl_4,WC15_cvl_5,(C15_pl,WC15_pl_2,WC15_pl_3,WC15_pl_4}; Total Sites:1269; Distinct Sites:41

Enter a regular expression to define the first clade:

Enter a regular expression to define the first clade:cvl Enter a regular expression to define the second clade:pl

Clade 1 includes 5 sequences:

WC15_cvl_2 WC15_cvl_2 WC15_cvl_3 WC15_cvl_4 WC15_cvl_5

Clade 2 includes 4 sequences: WC15_pl WC15_pl_2 WC15_pl_3 WC15_pl_4

Is this partitioning correct (y/n)y

Proportion of sequence in population 1: 0.555556 Proportion of sequence in population 2: 0.444444

Nucleotide based distance formula.
JC69
K2P
K2P_RV
p_Distance
ТЗР
TN84
TN93
TN93_RV
Unaligned_LZ
Unaligned_LZ_FR
Tamura-Nei (93) distance (unequal character frequencies, A->G, C->T and transversional bias corrections).
1 required (1 chosen). OK Cancel

FST and Snn

- Population characteristics:
 - Metapopulation diversity (pi_T)
 - Mean subpopulation diversity (pi_S)
 - Mean interpopulation diversity (pi_B)

* F_{ST}

- Hudson, Slatkin and Madison (Genetics 132:583-589)
- * Slatkin (Evolution 47:264-279)
- * Hudson, Boos and Kaplan (Mol Bio Evol 9: 138-151)
- * Hudson (S_nn) (Genetics 155:2011-14):

Population characterisitcs: Metapopulation diversity (pi_T) = 0.0222394 Mean subpopulation diversity (pi_S) = 0.00609144 Mean interpopulation diversity (pi_B) = 0.0387911

F_ST

Hudson, Slatkin and Madison	(Genetics	132:583-589): 0.842968
Slatkin	(Evolution	47:264-279) : 0.728561
Hudson, Boos and Kaplan	(Mol Bio Evol	9: 138-151) : 0.726097
Hudson (S_nn)	(Genetics	155:2011-14): 1

Data set B

Population characterisitcs: Metapopulation diversity (pi_T) = 0.0477232 Mean subpopulation diversity (pi_S) = 0.0445892 Mean interpopulation diversity (pi_B) = 0.051275

F_ST

Hudson, Slatkin and Madison	(Genetics	132:583-589):	0.13039
Slatkin	(Evolution	47:264-279) :	0.0697419
Hudson, Boos and Kaplan	(Mol Bio Evol	9: 138-151) :	0.0656693
Hudson (S_nn)	(Genetics	155:2011-14):	0.75

Population characterisitcs: Metapopulation diversity (pi_T) = 0.0222394 Mean subpopulation diversity (pi_S) = 0.00609144 Mean interpopulation diversity (pi_B) = 0.0387911

F_ST

 Hudson, Slatkin and Madison (Genetics
 132:583-589): 0.842968

 Slatkin
 (Evolution
 47:264-279) : 0.728561

 Hudson, Boos and Kaplan
 (Mol Bio Evol 9: 138-151) : 0.726097

 Hudson (S_nn)
 (Genetics
 155:2011-14): 1

Bootstrap Estimators
Skip
Sure
_ Item Description
Resample with replacement within populations to
estimate sampling properties of the estimators.
1 required (1 chosen). OK Cancel

Data set B

Population characterisitcs: Metapopulation diversity (pi_T) = 0.0477232 Mean subpopulation diversity (pi_S) = 0.0445892 Mean interpopulation diversity (pi_B) = 0.051275

F_ST

Hudson, Slatkin and Madison	(Genetics	132:583-589):	0.13039
Slatkin	(Evolution	47:264-279) :	0.0697419
Hudson, Boos and Kaplan	(Mol Bio Evol	9: 138-151) :	0.0656693
Hudson (S_nn)	(Genetics	155:2011-14):	0.75

Bootstrapped estimator statistics.

Hudson, Slatkin and Observed value : Bootst. mean : Bootst. median : Bootst. st. dev.:	0.877 0.875	132:583-589)
Bootst. 95% CI :	0.844 - 0.924	
Slatkin Observed value : Bootst. mean : Bootst. median : Bootst. st. dev.: Bootst. 95% CI :	0.782 0.778 0.033	47:264-279)
Hudson, Boos and Kap Observed value : Bootst. mean : Bootst. median : Bootst. st. dev.: Bootst. 95% CI :	0.780 0.776 0.034	9: 138-151)
Hudson (S_nn) Observed value : Bootst. mean : Bootst. median : Bootst. st. dev.: Bootst. 95% CI :	1.000 1.000 1.000 0.000	155:2011-14)

Data set B

Bootstrapped estimator statistics.

Hudson, Slatkin and Madiso Observed value : 0.130 Bootst. mean : 0.221 Bootst. median : 0.209 Bootst. st. dev.: 0.185	-	132:583-589)
Bootst. 95% CI : -0.090	- 0.556	
Slatkin Observed value : 0.070 Bootst. mean : 0.137 Bootst. median : 0.117 Bootst. st. dev.: 0.122 Bootst. 95% CI : -0.043		47:264-279)
Hudson, Boos and Kaplan Observed value : 0.066 Bootst. mean : 0.130 Bootst. median : 0.110 Bootst. st. dev.: 0.117 Bootst. 95% CI : -0.040		9: 138-151)
Hudson (S_nn) Observed value : 0.750 Bootst. mean : 0.851 Bootst. median : 0.875 Bootst. st. dev.: 0.099 Bootst. 95% CI : 0.667		155:2011-14)

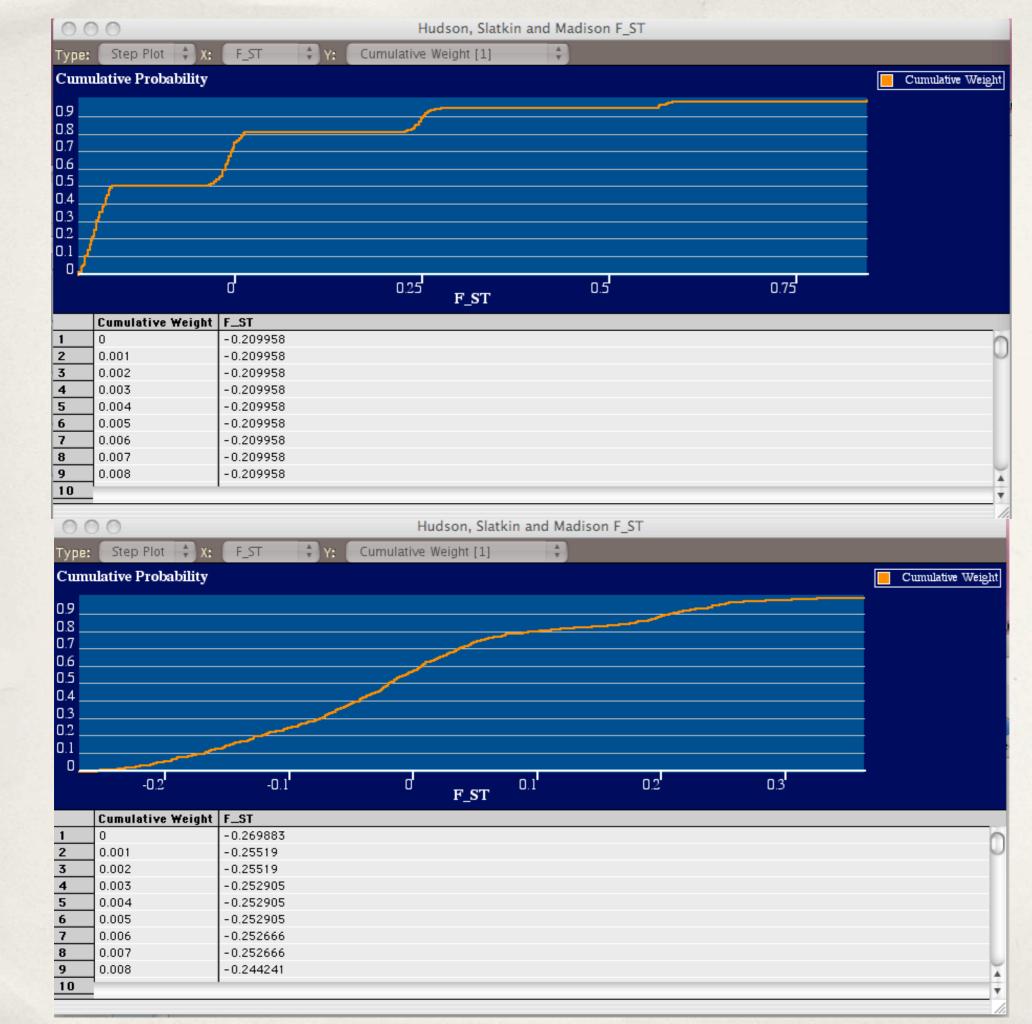
Permutation Test
Skip
But of course
Itam Description
Item Description
Randomly allocate sequences into subpopulations and tabulate the distribution of various F_ST statistics.
1 required (1 chosen). OK Cancel

Permutation Test		
S kip		
But of course		
-Item Description ———		
Randomly allocate sequences into subpopulations and tabulate the distribution of various F_ST statistics.		

Prob {Random F_ST > Observed F_ST}

Hudson,	Slatkin and Madison	:	Ø
Slatkin		:	0
Hudson,	Boos and Kaplan	:	0
Hudson,	S_nn	:	Ø

Permutation Test				
Skip				
But of course				
-Item Description				
Randomly allocate sequences into subpopulations and tabulate the distribution of various F_ST statistics.				
tabulate the distribution of various r_st statistics.				
1 required (1 chosen). OK Cancel				

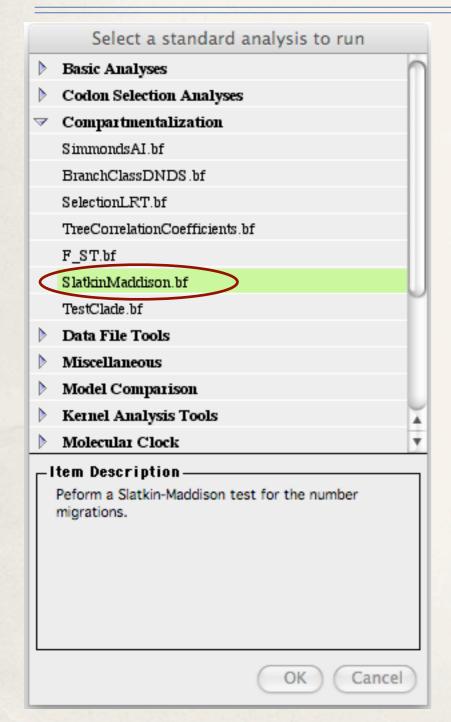

Prob {Random F_ST > Observed F_ST}

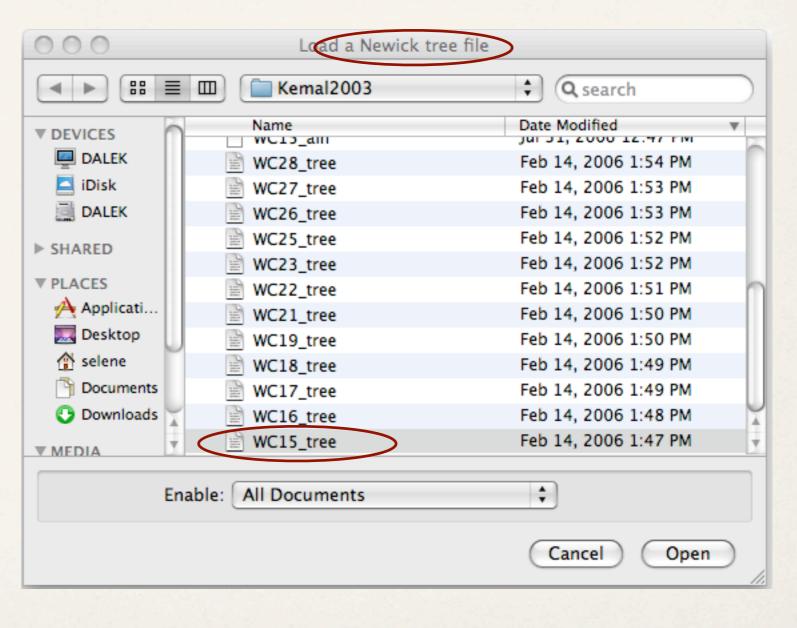
Hudson,	Slatkin and Madison	:	0
Slatkin		:	0
Hudson,	Boos and Kaplan	:	0
Hudson,	S_nn	:	Ø

Data set B

Prob {Random F_ST > Observed F_ST}

Hudson,	Slatkin and Madison	:	0.173
Slatkin		:	0.173
Hudson,	Boos and Kaplan	:	0.173
Hudson,	S_nn	:	0.023




Data set A

 $F_{ST} = 0.84$

Data set B $F_{ST} = 0.13$

Slatkin-Maddison test

You will need a phylogeny to carry out this analysis

Read tree: ((((WC15_cvl,(WC15_pl,((WC15_pl_2,WC15_pl_3),WC15_pl_4))),WC15_(How many sequence types: (>=2):2

Enter a reg exp used to define clade 1:pl Matched: WC15_pl,WC15_pl_2,WC15_pl_3,WC15_pl_4 Matched: WC15_cvl,WC15_cvl_3,WC15_cvl_4,WC15_cvl_2,WC15_cvl_5

Set 1 (TYPE 1) includes 4 sequences:

WC15_pl_2 WC15_pl_2 WC15_pl_3 WC15_pl_4

Set 2 (TYPE 2) includes 5 sequences: WC15_cvl WC15_cvl_3 WC15_cvl_4 WC15_cvl_2

WC15_cvl_5

Read tree: ((((WC15_cvl,(WC15_pl,((WC15_pl_2,WC15_pl_3),WC15_pl_4))),WC15_(How many sequence types: (>=2):2

Enter a reg exp used to define clade 1:pl Matched: WC15_pl,WC15_pl_2,WC15_pl_3,WC15_pl_4 Matched: WC15_cvl,WC15_cvl_3,WC15_cvl_4,WC15_cvl_2,WC15_cvl_5

Set 1 (TYPE 1) includes 4 sequences:

WC15_pl_2 WC15_pl_2 WC15_pl_3 WC15_pl_4

Set 2 (TYPE 2) includes 5 sequences: WC15_cvl WC15_cvl_3 WC15_cvl_4 WC15_cvl_2

WC15_cvl_5

Data set A

Is this partitioning correct (y/n)y Please enter a descriptive name for TYPE 1 sequences:plasma

Proportion of plasma sequences: 0.444444 Please enter a descriptive name for TYPE 2 sequences:cv

Proportion of cv sequences: 0.555556

Inferred 1 migration events

The following branches have migration events:

cv --> plasma: Node5 Read tree: ((((WC15_cvl,(WC15_pl,((WC15_pl_2,WC15_pl_3),WC15_pl_4))),WC15_(How many sequence types: (>=2):2

Enter a reg exp used to define clade 1:pl Matched: WC15_pl,WC15_pl_2,WC15_pl_3,WC15_pl_4 Matched: WC15_cvl,WC15_cvl_3,WC15_cvl_4,WC15_cvl_2,WC15_cvl_5

Set 1 (TYPE 1) includes 4 sequences:

WC15_pl_2 WC15_pl_2 WC15_pl_3 WC15_pl_4

Set 2 (TYPE 2) includes 5 sequences: WC15_cvl WC15_cvl_3 WC15_cvl_4 WC15_cvl_2 WC15_cvl_5

Data set A

Is this partitioning correct (y/n)y Please enter a descriptive name for TYPE 1 sequences:plasma

Proportion of plasma sequences: 0.444444 Please enter a descriptive name for TYPE 2 sequences:cv

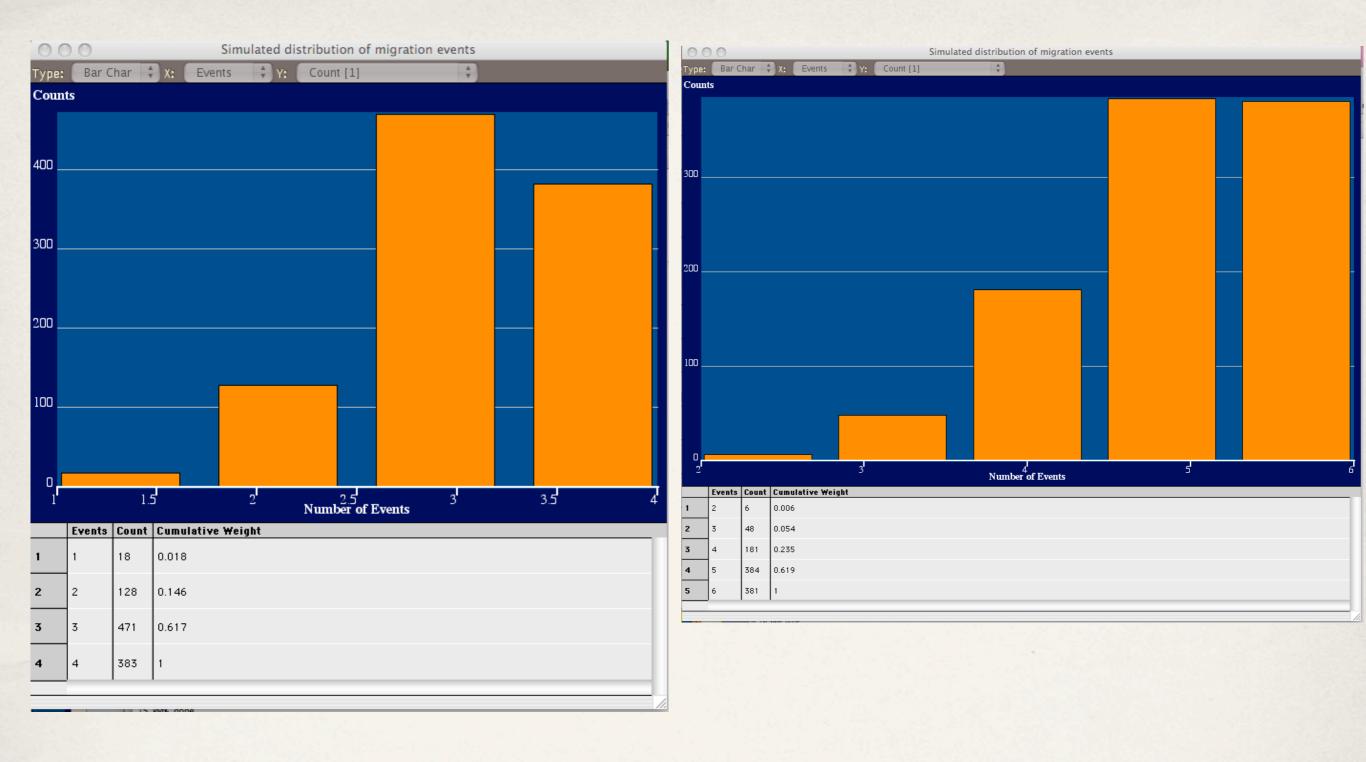
Proportion of cv sequences: 0.555556

Inferred 1 migration events

The following branches have migration events:

cv --> plasma: Node5

Data set B


Proportion of brain sequences: 0.375 Please enter a descriptive name for TYPE 2 sequences:sp

Proportion of sp sequences: 0.625

Inferred 3 migration events

brain --> sp: Node1 B_JP_X_SUBJECT_2_9sp B_JP_X_SUBJECT_2_10sp

Write a tree with bra	anch partitions to:	
Save As: wc15		
< ▶ ::	\$ Q search	
DEVICES Name	Date Modified 🛛 🔻	
DALEK trees	Yesterday, 2:25 PM	
iDisk wc15	Yesterday, 2:18 PM	
DALEK		
PLACES Applications		
Desktop		
☆ selene		Permutation Test
Documents		
C Downloads		S kip Most certainly
		Mostcenanty
New Folder	Cancel Save	
(Item Folder)	Cancer Save	
		-Item Description
		Randomly allocate sequences into classes and
		tabulate the distribution of migration events.

Prob{as many or fewer migration events by chance} = 0.018

Prob{as many or fewer migration events by chance} = 0.054

Data set A

Data set B

Association Index

 You will need an aligment that includes a sequence that can be cosidered as an outgroup

	Select a standard analysis to run	
Þ 1	Basic Analyses	0
١ (Codon Selection Analyses	
▽ (Compartmentalization	
5	SimmondsAI.bf	
]	BranchClassDNDS.bf	
5	SelectionLRT.bf	
5	TreeCorrelationCoefficients.bf	
]	F_ST.bf	
5	SlatkinMaddison.bf	U
5	TestClade.bf	
Þ 1	Data File Tools	
Þ 1	Miscellaneous	
Þ 1	Model Comparison	- U
Þ 1	Kernel Analysis Tools	- 4
Þ 1	Molecular Clock	Ŧ
_ Ite	em Description ————	
P	eter Simmonds' Association Index (AI).	- 11
		- 11
		- 11
		- 11
	OK Can	cel

Association Index

 You will need an aligment that includes a sequence that can be cosidered as an outgroup

•	Select a standard analysis to run Basic Analyses	6
	Codon Selection Analyses	н
	•	н
×	Compartmentalization SimmondsAL bf	
	BranchClassDNDS.bf	н
	SelectionLRT.bf	н
		Н
	TreeCorrelationCoefficients.bf	н
	F_ST.bf	н
	SlatkinMaddison.bf	k
N	TestClade.bf Data File Tools	1
		ł
	Miscellaneous	1
	Model Comparison	L
•	· · · · · · · · · · · · · · · · · · ·	4
Þ	Molecular Clock	1
1 I	tem Description Peter Simmonds' Association Index (AI).	
_	OK Cance	

D 030	
D_03C	
D_03P	
D_04C	
D_04P	
D_05C	
D_05P	
D_06C	
D_06P	
D_07C	
D_07P	
D_08C	
D_08P	
D_09C	
D_09P	
D_10C	
D_10P	
D_11C	
D_11P	
D_12C	
D_12P	
D_13C	
D_13P	
D_14C	
D_14P	
D_15C	
D_15P	
R_01C	
Item Description	
Use R_01C as the outgroup	
1 required (1 chosen). OK Ca	ncel

Association Index

Proportion of sequences in group 0: 0.4

Proportion of sequences in group 1: 0.6 How many relabelings per sample (default 10):? How many tree bootstrap samples (default 100):? Proportion of reshufflings less associated than the sample needed for significance (default 2/3)? Using 100 tree bootstraps and 100 relabelings per sample with significance called at 0.6666667

Baseline d = 0.00173611 Running tree simulations...

Association Index: 0.0142258 Bootstrap significance :100/100


Proportion of sequences in group 0: 0.352941

Proportion of sequences in group 1: 0.647059 How many relabelings per sample (default 10):? How many tree bootstrap samples (default 100):? Proportion of reshufflings less associated than the sample needed for significance (default 2/3)? Using 100 tree bootstraps and 100 relabelings per sample with significance called at 0.6666667

Baseline d = 0.44045 Running tree simulations...

Association Index: 0.601938 Bootstrap significance :87/100 Data set A

Data set B

Correlation coefficients

 You will need to load a phylogeny to carry out this analysis.

	Select a standard analysis to run	
Þ	Basic Analyses	n
Þ	Codon Selection Analyses	
~	Compartmentalization	
	SimmondsALbf	
	BranchClassDNDS .bf	
	SelectionLRT.bf	
	TreeCorrelationCoefficients.bf	
	F_ST.bf	
	SlatkinMaddison.bf	U
	TestClade.bf	
Þ	Data File Tools	
Þ	Miscellaneous	
Þ	Model Comparison	
Þ	Kernel Analysis Tools	Ă
Þ	Molecular Clock	Ŧ
_ I	tem Description	_ 6
	Assess the correlation between phylogenetic and compartment segregation using generalized correlation coefficients and permutation tests.	

OK

Cancel

Correlation Coefficients

- Set 1 (TYPE 1) includes 4 sequences: WC15_pl WC15_pl_2 WC15_pl_3 WC15_pl_4
- Set 2 (TYPE 2) includes 5 sequences: WC15_cvl WC15_cvl_3 WC15_cvl_4 WC15_cvl_2 WC15_cvl_5

```
Is this partitioning correct (y/n)y
```

Correlation coefficients:

Branch counts (r_b) : 0.73093 Path lengths (r) : 0.993191

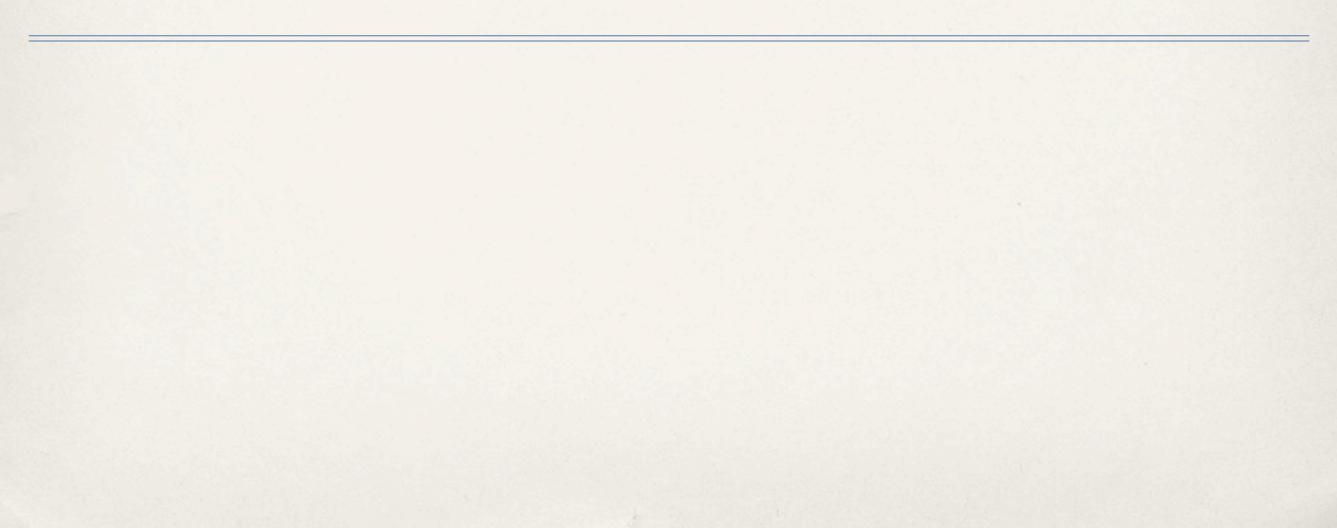
 $Prob\{r_b \ random >= r_b \ observed\} < 0.00899101$ $Prob\{r \ random \ >= r \ observed \ \} < 0.015984$

- Set 1 (TYPE 1) includes 6 sequences: B_JP_X_SUBJECT_2_13br B_JP_X_SUBJECT_2_11br B_JP_X_SUBJECT_2_12br B_JP_X_SUBJECT_2_14br B_JP_X_SUBJECT_2_15br B_JP_X_SUBJECT_2_16br
- Set 2 (TYPE 2) includes 10 sequences: B_JP_X_SUBJECT_2sp B_JP_X_SUBJECT_2_2sp B_JP_X_SUBJECT_2_3sp B_JP_X_SUBJECT_2_7sp B_JP_X_SUBJECT_2_6sp B_JP_X_SUBJECT_2_6sp B_JP_X_SUBJECT_2_4sp B_JP_X_SUBJECT_2_5sp B_JP_X_SUBJECT_2_5sp B_JP_X_SUBJECT_2_8sp B_JP_X_SUBJECT_2_9sp B_JP_X_SUBJECT_2_10sp

Is this partitioning correct (y/n)y

Correlation coefficients:

Branch counts (r_b) : 0.233241 Path lengths (r) : 0.110911


Data set A

Data set B

Comparison between methods

	Data set A	Data set B
F _{ST}		×
S _{nn}		
SM		×
AI	~	~
r	~	~
ľЪ	~	×

Exercises

Follow the instructions to determine if sequences from patients C, D.
 K, Q and S show evidence of compartmentalization

Results

	С	D	К	Q	S	
FST	0.074	-0.033	0.57	0.83	0.76	
(HSM)	p = 0.066	p = 0.754	p =0.12	p =0	p = 0	
FST (S)	0.039	-0.016	0.3	0.70	0.62	
	p= 0.066	p= 0.754	p= 0.12	p=0	p = 0	
FST	0.039	-0.016	0.3	0.70	0.62	
(HBK)	p= 0.066	p = 0.754	p = 0.12	p=0	p = 0	
Snn	0.64	0.32	0.72	0.96	1	
	p = 0.11	p = 0.952	p =0.013	p=0	p = 0	
AI	0.71	1.38	0.63	0.23	1.2 x 10 ⁻⁸	
	boot = 85	boot = 1	boot = 89	boot = 100	boot = 100	
SM	8 migrations $p = 0.452$	12 migrations p =0.974	9 migrations p= 0.46	2 migrations p = 0	1 migration $p = 0$	
r	-0.0012	-0.04	0.1	0.83	0.95	
	P < 0.27	p < 0.91	p < 0.026	p < 0.00099	p < 0.00099	
rb	0.021	-0.045	0.14	0.4729	0.69	
	p < 0.42	p < 0.93	p < 0.037	p < 0.00099	p < 0.00099	

Patient data

	С	D	К	Q	S
Current CD4 (cells/mm ³)	312	55	221	68	32
Plasma RNA (log copies/ml)	5.7	5.9	5.7	5.1	6
CSF RNA (log copies/ml)	5.2	4	4.4	3.5	3.2
CSF WBC (cells/mm ³)	312	2	16	2	3
Compartmentalized					