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Abstract

Despite many attempts to introduce evolutionary models that permit substitutions that instantly alter

more than one nucleotide in a codon, the prevailing wisdom remains that such changes are rare and

generally negligible (or are reflective of non-biological artifacts, such as alignment errors), and codon

models continue to posit that only single nucleotide change have non-zero rates. We develop and test a

simple hierarchy of codon-substitution models with non-zero evolutionary rates for only one-nucleotide

(1H), one- and two-nucleotide (2H), or any (3H) codon substitutions. Using 35,000 empirical alignments,

we find widespread statistical support for multiple hits: 58% of alignments prefer models with 2H allowed,

and 22% – with 3H allowed. Analyses of simulated data suggest that these results are not likely to be

due to simple artifacts such as model misclassification or alignment errors. Further modeling revealed

that synonymous codon island jumping among codons encoding serine, especially along short branches,

contributes significantly to this 3H signal. While serine codons were prominently involved in multiple-

hit substitutions, there were other common exchanges contributing to better model fit. It appears that a

small subset of sites in most alignments have unusual evolutionary dynamics not well explained by existing

model formalisms, and that commonly estimated quantities, such as dN/dS ratios may be biased by model

misspecification. Our findings highlight the need for continued evaluation of assumptions underlying

workhorse evolutionary models and subsequent evolutionary inference techniques. We provide a software

implementation for evolutionary biologists to assess the potential impact of extra base hits in their data

in the HyPhy package.

Key words: multiple nucleotide substitutions, positive selection, polymerase zeta, evolutionary process,
adaptive evolution

Introduction

Most modern codon models in wide-spread use

assume any changes within a codon happen as

a sequence of single instantaneous nucleotide

change, enforced by setting instantaneous rates

between codons that differ in more than one

nucleotides to zero. This choice was made

independently for the mechanistic models of Muse

and Gaut (1994) and Goldman and Yang (1994),
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and adopted by subsequent model developers and

practitioners. For example, when Halpern and

Bruno (1998) introduced their mutation-selection

models, they considered the general multi-hit

(MH) case first, but noted that introducing

the single hit assumption “..has very little

effect on our results under the conditions we

have investigated.” This assumption is both

computationally convenient and biologically sound

in the majority of cases, since it assumes that the

events when randomly occurring mutations occur

instantaneously in the same codon is vanishingly

rare. While rare, evidence for substitutions

occurring in tandem at adjacent nucleotide sites

had been reported at about the same time

the codon models were being introduced (Wolfe

and Sharp, 1993). Averof et al. (2000) reported

significant rates of changes between TCN and

AGY codon islands in perfectly conserved serine

residues, and argued against going through

intermediary non-synonymous changes due to

their likely deleterious effects, while (Rogozin

et al., 2016) argued that strong purifying selection

on single nucleotide changes is a more plausible

explanation in general. Neither of those studies

has considered an explicit evolutionary model,

however. Serine is the only amino-acid with

synonymous codon islands in the universal

genetic code, but several other codes have have

other aminoacids with this property: leucine

in the Chlorophycean and Scenedesmus obliquus

mitochondrial codes (TAG and CTH), and alanine

in the Pachysolen tannophilus nuclear code (CTG

and GCH).

Recent studies estimate that 2% of nucleotide

substitutions are part of larger multiple nucleotide

changes that occur simultaneously (Harris and

Nielsen, 2014; Kaplanis et al., 2019), due in part

to an error-prone DNA polymerase Zeta. Human

germline tandem mutations have been estimated

to constitute 0.4% of all mutations (Chen et al.,

2014), and individual cases of such mutations

have been reported to have significant phenotypic

consequences, e.g. via their effects on protein

folding (Okada et al., 2017).

A number of codon model extensions have

incorporated MH, invariably finding improvement

in fit and (if the model allowed testing)

statistically significant evidence of non-zero rates

involving multiple nucleotide changes. Kosiol

et al. (2007) developed a general MH empirical

codon substitution model estimated jointly from

a large collection of training alignments, and

noted that it was overwhelmingly preferred to

standard SH models on a sample of biological

data from the Pandit database. Several groups

have independently developed alternative codon

model parametrizations to allow for MH, including

Whelan and Goldman (2004) (“... these events

[MH] are far more prevalent than previously

thought”), Zaheri et al. (2014), and Dunn

et al. (2019) (the latter two studies show

a dramatically better model fit to empirical

alignments when allowing MH). Other studies that
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Table 1. Key parameters, models considered here. GDD = general discrete distribution; 1H, 2H, 3H – instantaneous
changes involving one, two, or three nucleotides.

Model

Parameter Description 1H 2H 3HSI 3H 3H+

ωi Site dN/dS ratio Random effect 3-bin GDD distribution

δ Global 2H/1H rate ratio 0 Estimated Estimated Estimated Estimated

ψs Global 3H/1H rate ratio for synonymous codon islands 0 Estimated Estimated =ψ Estimated

ψ Global 3H/1H rate ratio 0 0 0 Estimated Estimated

used evolutionary models with some support for

MH based on, at least in part, numerical rate

estimates from training data include De Maio et al.

(2013); Doron-Faigenboim and Pupko (2007);

Miyazawa (2011); Zoller and Schneider (2012)

Despite multiple introductions to the field, these

models have not been able to gain a substantial

foothold in applied evolutionary analyses, and for

some of these methods, software implementing

them is no longer available.

Failure to include multiple hits in codon

substitution models may mislead evolutionary

hypothesis testing. Venkat et al. (2018) found

that the addition of a double-hit rate parameter

improved model fit and impacted branch-specific

inferences of positive selection (MH along short

branches can inflate false positives). Dunn et al.

(2019) used principled simulation studies to show

that fitting 1H models to data generated with low

rates of multiple hits can increase false positive

rates and dilute power for identifying individual

sites subject to positive selection.

In this study we develop simple extensions to

the Muse and Gaut (1994) based codon model

which add double, and triple instantaneous (2H,

3H) changes and compares them to simpler

models in large collections of empirical data.

Our models are mechanistic and simpler than

those proposed by Whelan and Goldman (2004)

and Dunn et al. (2019). This relative simplicity

allows our models to be implemented and fitted

quickly, and offers straightforward interpretation,

including the ability to identify individual sites

that benefit from the addition of MH. The primary

goal of our data analyses is to establish how often

evidence for multiple hits can be detected in large-

scale empirical databases (something that no other

study looking at evolutionary models has done),

identify the codons that are frequently involved

in such events, and explore plausible biological

explanations for why these rates are non-zero for

a majority of alignments.

Results
Benchmark alignments

We introduce the models using a collection of

thirteen representative alignments that we and

others have been using to benchmark selection

analyses, most recently in Wisotsky et al. (2020).

We also consider the primate lysozyme alignment

originally analyzed with codon models by Yang

3
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Table 2. Analysis of benchmark datasets. N - number of sequences, S - number of codons, T - total tree length (expected
subs/site) under the 1H model, δ rate estimate under the 3H model (2H model in parentheses), ψs estimate under the 3H
model, ψ estimate under the 3H model. Likelihood ratio p-values for pairwise model tests, e.g. 2H:1H – 2H alternative, 1H
null. Values <0.05 are bolded. # sites with ER>5 lists the number of sites which show strong preferences for 2H or 3H
model using evidence ratios of at least 5 (see text)

Gene N S T δ ψs ψ LRT p-value # sites with ER>5

2H:1H 3H+:1H 3H+:2H 3H+:3HSI 3HSI:2H 2H:1H 3H+:2H

β-globin 17 144 2.5 0.7 (0.81) > 100 0 <0.001 <0.001 <0.001 1 <0.001 10 6

Flavivirus NS5 18 342 6 0.49 (0.73) 2.3 0.6 <0.001 <0.001 0.056 0.062 0.13 16 0

Primate Lysozyme 19 130 0.24 0 (0) 0 0 1 1 1 1 1 0 0

COXI 21 510 5.3 0.4 (0.4) 0 0 <0.001 0.0018 1 0.94 0.98 3 0

Drosophila adh 23 254 1.4 0.31 (0.4) 0 0.42 <0.001 <0.001 0.19 0.067 0.99 4 0

Encephalitis env 23 500 0.84 0.076 (0.076) 0 0 0.19 0.42 1 1 0.98 0 0

Sperm lysin 25 134 2.8 0.4 (0.46) 2.3 0.3 <0.001 <0.001 0.04 0.015 0.49 21 1

HIV-1 vif 29 192 0.96 0.007 (0.044) 0 0.17 0.058 0.0013 0.0077 0.0018 0.95 0 2

Hepatitis D virus antigen 33 196 1.9 0.34 (0.37) 0 0.2 <0.001 <0.001 0.25 0.098 0.99 15 0

Vertebrate Rhodopsin 38 330 3.9 0.54 (0.72) 9.2 0.9 <0.001 <0.001 <0.001 <0.001 0.0029 43 3

Camelid VHH 212 96 15 0.29 (0.32) 0 0.13 <0.001 <0.001 0.011 0.0026 0.92 46 0

Influenza A virus HA 349 329 1.4 0.06 (0.06) 0 0.0093 <0.001 <0.001 0.95 0.74 0.98 5 0

HIV-1 RT 476 335 6.6 0.086 (0.093) 0 0.048 <0.001 <0.001 0.15 0.052 1 17 1

(1998). We consider five models (see Table 1 and

the methods section for details), which form a

nested hierarchy (with the exception of 3HSI and

3H which are not nested), each with one additional

alignment-wide parameter.

1H is the standard Muse-Gaut style model which

only permits single nucleotides to substitute

instantaneously.

2H is the 1H model extended to allow two

nucleotides in a codon to substitute

instantaneously with rate δ (relative to 1H

synonymous rate).

3HSI is the 2H model extended to allow

three nucleotides in a codon to substitute

instantaneously if the change is synonymous

(e.g., serine islands), with relative rate ψs.

3H is the 2H model extended to also permit any

three-nucleotide substitutions, with relative

rate ψ.

3H+ is the 3HSI model extended to also

permit any three-nucleotide substitutions,

with relative rate ψ.

The nested models can be compared using

standard likelihood ratio tests, using the χ2
D

asymptotic distribution to assess significance,

where D is chosen based on the number of

constrained parameters. Key analysis results are

summarized in Table S1.

1. Evidence for multiple hits is pervasive

In ten of thirteen datasets the analyses

strongly reject the hypothesis that 2H

have zero rates, with p<0.001 (2H:1H

comparison). For five of thirteen datasets,

we can further reject the hypothesis that

4
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FIG. 1. Archetypal sites based on model preferences. Four alignment sites from the Vertebrate Rhodopsin (Yokoyama
et al., 2008) chosen illustrate substitution patterns which give rise to support for specific rate models. Branches are colored
by the amino-acid that is observed/estimated to exist at the end of the branch. Internal nodes are labeled with ancestral
states inferred under the 3H+ model. Evidence ratios, which are the ratios of MLE site likelihoods under the respective
models, for four pairwise model comparisons are listed below each site.

3H have zero rates (3H+:2H comparison) at

p≤0.05.

2. Varied patterns for rate preferences

Even in this small collection of datasets,

the entire spectrum of options is spanned:

for the Primate Lysozyme dataset there

is no evidence for anything other than

1H changes, to the Vertebrate Rhodopsin

dataset, where each of the individual rates

is significantly different from 0. HIV-1 vif

dataset is the only dataset that does not

support 2H rates, but does support 3H rates.

Five datasets share a pattern: reject 1H in

favor of 2H, and 1H in favor of 3H+, but

none of the others, which can be interpreted

as support for 2H rates, but none of the 3H

rates.

3. Varied extent of site level support for

MH Ratios between site-level likelihoods

under individual models, denoted here as

ER (evidence ratios), can indicate which

model provides better fit to the data at a

particular site. The number of sites with

strong (ER>5) preference for 2H vs 1H

model was positive for all models rejecting

1H in favor of 2H with LRT, and ranged

from 3 to 46, while a smaller number of sites

(0−6) preferred 3H+ to 1H. Interestingly,

for Camelid VHH, where the LRT rejects

1H in favor of 3H+, no individual sites had

ER>5, implying that the support for this

5
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model came from a number of individual

weak site contributions.

4. Interaction between 1H, 2H and 3H

rates Assuming that the biological process

of evolution does include MH events, not

including those in the model might have the

effect of inflating other rate estimates. In

line with other studies (Dunn et al., 2019),

the addition of 2H rates lowers the point

estimate of ω rates for all datasets where

2H:1H comparison is significant at p≤0.05

(Table S1), sometimes dramatically (e.g., by

a factor of 0.6× for the β−globin gene)

which could be indicative of estimation bias

due to model mis-specification. Similarly,

the δ rate under the 2H model is always

higher than the rate estimate under the 3H+

model, implying that the 2H rate may be

"absorbing" some of the 3H variation. We

will later see the same pattern emerge in

large-scale sequence screens.

To bolster one’s intuitive understanding

of model preferences, we visualized inferred

substitutions at four archetypal sites in the

Vertebrate Rhodopsin alignment (Yokoyama

et al., 2008) where every single rate in the 3H+

model was significantly non-zero (Figure 1).

We used joint maximum likelihood ancestral

state reconstruction under the 3H+ model to

estimate the number and kind of substitutions

that occurred at each site (this number is a lower

bound and is subject to estimation uncertainty;

here we use it for illustration purposes). Site 37

is what one might call a traditional single-hit

substitution site, where the 1H model is preferred

to all other models based on ER values; all

apparent substitutions involve changes at a single

nucleotide, hence the standard 1H is perfectly

adequate. Of 330 codons, 149 had a preference for

the 1H model compared to the 2H model. Site 144

has a dramatic preference for the 2H model over

the 1H model (ER>300); of 6 total substitutions,

4 involved a change at 2 nucleotides (and none

– at 3). Site 281 has a preference for the 3HSI

model over the 2H model (ER=39), and has a

complex substitution pattern : nine 1H, four 2H,

and two 3H substitutions; both 3H substitutions

at this site involve synonymous changes between

serine codon islands (TCN and AGY). 148 other

sites had a preference (ER>1) for 3HSI over 2H.

Finally, site 236 prefers 3H to 3HSI (ER=5.4)

as the only 3H substitution at that site does not

involve serine.

Large-scale empirical databases

We fitted the hierarchy of MH models to

35,117 empirical datasets (Enard et al., 2016;

Moretti et al., 2014; Shultz and Sackton, 2019) ,

assembled from three large-scale studies of natural

selection of nuclear genes, and a smaller collection

vertebrate and invertebrate mitochondrial genes

(Mannino et al., 2020), which represent a different

evolutionary landscape (e.g., not affected by

polymerase zeta).

6
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Table 1 Dataset analysis summary

Study 2H:1H 3H+:2H 3H+:1H 3H+:3HSI 3HSI:2H

MTDNA/INVERT 92% (119.2) 7.4% (17.12) 92% (122.2) 8.9% (19.97) 2.3% (9.089)
MTDNA/VERT 54% (33.30) 3.0% (16.60) 50% (36.92) 3.2% (15.11) 0.69% (7.986)
IMMUNE 62% (32.39) 20% (17.76) 63% (39.87) 21% (13.63) 7.4% (12.84)
SELECTOME 76% (55.99) 37% (21.82) 77% (67.67) 20% (13.56) 29% (16.73)
PETROV 28% (15.69) 5.4% (14.18) 28% (20.39) 5.3% (10.49) 3.4% (11.07)
Overall 58% (42.91) 22% (20.08) 58% (52.08) 16% (13.33) 14% (15.70) ⬇

Figure 1 MH detection rates as a function of alignment length

Figure 2 MH detection rates as a function of sequence count

Figure 3 MH detection rates as a function of tree length

Figure 4 MH detection rates as a function of ω
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FIG. 2. Fraction of alignments with MH rates. The fraction of alignments where the corresponding test was significant
at p≤0.01 as a function of alignment properties. Orange circles depict the binning steps and the number of alignments in
each bin. Curves are smoothed using monotone splines. Tree lengths and ω values are estimated under the 1H model.

Table 3. Evidence for multiple hit rates in empirical
datasets For each collection, the fraction of alignments
with significant (p<0.01, based on a 5-way conservative
Bonferroni correction for FWER of 5%) LRT test results,
and the average value of the likelihood ratio test statistic
(for significant tests) in parentheses.

2H:1H 3H+:2H 3H:1H 3H+:3HSI 3HSI:2H

Invertebrate mtDNA 92% (119.2) 7.4% (17.12) 92% (122.2) 8.9% (19.97) 2.3% (9.089)

Vertebrate mtDNA 54% (33.30) 3.0% (16.60) 50% (36.92) 3.2% (15.11) 0.69% (7.986)

Shultz and Sackton (2019) 62% (32.39) 20% (17.76) 63% (39.87) 21% (13.63) 7.4% (12.84)

Moretti et al. (2014) 76% (55.99) 37% (21.82) 77% (67.67) 20% (13.56) 29% (16.73)

Enard et al. (2016) 28% (15.69) 5.4% (14.18) 28% (20.39) 5.3% (10.49) 3.4% (11.07)

Overall 58% (42.91) 22% (20.08) 58% (52.08) 16% (13.33) 14% (15.70)

Strong evidence for non-zero multiple-hit rates

We found widespread statistical support for

models which includes non-zero rates involving

multiple nucleotides. The 1H model was

overwhelmingly rejected in favor of the 2H

model (Table 3), and the improvement in fit was

quite dramatic on average (mean LR), for all but

the Enard et al. (2016) collection. A substantial

fraction of alignments preferred models that

allowed non-zero three rates over the 2H model,

and also the 3H+ model which does not limit

3H instantaneous changes to only synonymous

codons. Based on the results of the four likelihood

ratio tests, each dataset could be assigned to a

unique rate preference category Figure 3. For

example, 11,899 alignments preferred 2H to 1H

model, but none of the other comparisons were

significant, i.e there was no evidence for non-

zero 3H instantaneous rates. 2,675 alignments

7
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preferred 2H to 1H, and 3H+ to 2H, i.e. provided

evidence for non-zero 3H instantaneous rates.

483 alignments preferred 2H to 1H and 3HSI to

2H, but not 3H+ to 3HSI, implying that all 3H

changes were constrained to synonymous codon

islands.
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FIG. 3. Intersections of likelihood ratio test
significance. Overlaps of empirical alignments with p≤
0.01 according to each of four LRTs performed for the
combined empirical datasets. Groups of alignments for
which a particular combination of tests was significant are
shown in the table, with the significant tests indicated with
filled dots. For example, there are 1537 alignments where
all 4 tests are significant, and 136 alignments where the
only significant test is 3SHI:2H.

Factors associated with MH detection

The rates at which 2H, 3H and 3HSI rates

were detected with p<0.01 as functions of

simple statistics of the alignments, are shown in

Figure 2. Larger (more sequences) and longer

(more codons) alignments generally elicited higher

detection rates for all types of multiple-hit

rates. Increasing overall divergence levels between

sequences, measured by the total tree length, also

corresponded to increasing detection rates, up to a

saturation point. The mean strength of selection,

measured by the gene-average ω had little effect on

detection rates, except for the noticeable dip for

the higher values. In a simple logistic regression

using 2H:1H p<0.01 as the outcome variable,

sequence length, and number of sequences were

positively associated with the detection rate (p<

0.0001), while tree length was confounded with the

number of sequences and was not independently

predictive, and ω was not significantly predictive.

Strong MH signal comes from a small fraction of
sites

For alignments where there was significant

evidence for nonzero 2H and/or 3H rates (p<

0.01), a small fraction of sites strongly (ER>

5) supported the corresponding MH model. For

the 2H:1H comparison, a median of 0.67%

(interquartile range, IQR [0.21%−1.7%]), and for

the 3H:2H comparison, a median of 0.52% (IQR

[0.26%−0.94%]) (Figure S2).

Patterns of substitution associated with MH rates

Substitutions between serine islands (AGY and

TCN) appear to be the most frequent inferred 3H

change in biological alignments (see Fig ??). Six

of the most common substitutions at sites with

high ER in support of the 3H+ model involve

island jumping, but other amino-acid pairs are also

involved in hundreds of apparent substitutions,

e.g. ATG(M)↔GCA(A) Of the 7664 datasets

that reject the 2H model in favor of the general

3H+ model, 2901(37.9%) fail to reject 3HSI in

favor of 3H+, implying that they only require non-

zero rates for synonymous island jumps. However,

many of the same changes frequently appear at

8
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Figure 1. Triple hit changes with ER (3H+:2H)>5; minimum 500 events per codon

GAG

AAA

AAG

CTG
AAT

CAG

AGAAGT

TCA

TC
T

AG
C

ACA

GTG

E

K

K

L

N

Q

R

S

S

S

S

T

V

samples = Array(2) [
  0: Array(26234) [0.08401084395235552, 7.30192243386568, 0.3036835852625013, 0.6773613660456218, 0.7136218859188933
  1: Array(5266) [0.2456549166178752, 0.3237311118630761, 0.9265316306144028, 0.2618396515136561, 0.7372749661580532
]

0.26355222912109266

sim_data = Array(431997) [Object, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object, 

raw_data = Array(431997) [Object, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object, 

source_data = Array(5266) [Object, Object, Object, Object, Object, Object, Object, Object, Object, Object, Object, 

top10 = Array(0) []

substitution_info = ƒ(data, cut)

vegalite ({
  "layer" : [{
    "data": {"values": _.filter (raw_data, (d)=>d.kind == 3 && d.ER32 > 5)},
    "transform" : [
      {"filter" : "datum.L < 1"}
    ],
    "mark": "bar",
    height: 360,
    width: 400,
    "encoding": {
      "color" : {"value" : "gray"},
      "opacity" : {"value" : 0.75},
      "x": {
        "bin": {"step": 0.01},
        "field": "L",
        "type": "quantitative",
        "axis":{
                 "title" : "Branch Length",
                  grid : false,
                  titleFontSize: 20, labelFontSize: 14, format : "r"
              }
      },
      "y": {
        "aggregate": "count",
        "type": "quantitative",
        "scale": {"type": "sqrt"},
        "axis":{
                 "title" : "Substitution Count",
                  grid : false,
                  titleFontSize: 20, labelFontSize: 14, format : "r"
              }    
        }
    }
  },
  {
    "data": {"values": _.filter (raw_data, (d)=>d.kind == 3 && d.ER32 < 1)},
    "transform" : [
      {"filter" : "datum.L < 1"}
    ],
    "mark": "bar",
    height: 360,
    width: 400,
    "encoding": {
      "color" : {"value" : "red"},
      "opacity" : {"value" : 0.5},
      "x": {
        "bin": {"step": 0.01},
        "field": "L",
        "type": "quantitative",
        "axis":{
                  grid : false,
                  titleFontSize: 20, labelFontSize: 14, format : "r"
              }
      },
      "y": {
        "aggregate": "count",
        "type": "quantitative",
      }
    }
  }]
}
)
 
 

PublishSearch

Three-hit substitutions 

with 3H+ support

Three-hit substitutions 

with 2H, but not 3H+ support

3H+:2H

2H:1H

FIG. 4. Three hit substitutions commonly occurring in empirical data. A subset of common three-hit substitutions
across all empirical datasets. Three-hit substitutions with 3H+ support are defined as those occurring at sites with ER(3H+:
2H)>5. Three-hit substitutions with 2H but not 3H+ support are defined as those occurring at sites with ER(3H+:2H)<1
and ER(2H :1H)>5. Branch lengths along which the two types of substitutions are inferred to occur are shown in the
histogram.
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FIG. 5. Three hit non-synonymous substitutions and two hit substitutions occurring in empirical data. A
subset of common substitutions across all empirical datasets. Three-hit substitutions with non-synonymous support are
defined as those occurring at sites with ER(3H+:3HSI)>5. Two-hit substitutions over short branches are defined as those
occurring at sites with ER(3H+:2H)<1 and ER(2H :1H)>10 and branch length is ≤0.05 subs/site. Two-hit substitutions
over short branches are defined as those occurring at sites with ER(3H+:2H)<1 and ER(2H :1H)>10 and branch length
is ≥0.25 subs/site.

d

sites that do not strongly prefer 3H+ to 2H model,

but strongly prefer 2H to 1H model (i.e, 2H

sites). A key determinant of whether or not an

AGY:TCN or other 3H change benefits from non-

zero ψ rates is the length of the branch. Branches

with 3H changes that supported 3H+ model were

significantly shorter than those where 2H model

was sufficient: median 0.09 substitutions/site, vs

median 0.26 substitutions/site . Consequently,

the need to explain 3H changes happening over

short branches (shorter evolutionary time, slower

9
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overall rates) provides evidence in support of 3H+

models.

Among 3H non-synonymous substitutions (see

Fig 5) codons encoding for serine are still

prominently represented, but not as dominant,

with numerous substitutions involving methionine

and other amino-acids.

Serine codons are similarly frequently involved

in 2H substitutions, along both short and

long branches (e.g. between codons such as

AGC↔TCC and AGT↔TCT ), but other pairs

are exchanged at least 90 times, including

ACA(T )↔ATG(M) and CAG(Q)↔TGG(W )

(short branches) and ATT (I)↔TTA(L) (long

branches).

Interaction between rate estimates

As with the benchmark datasets, the inclusion

of multiple hit rates in models has an effect on

other substitution rates. The gene wide point

estimate of ω is systematically lowered by the

inclusion of non-zero δ rates, even though there

are rare instances when the ω estimates are

increased (Figure S1). A Thiel-Sen robust linear

regression estimate yields ω(2H)∼0.965×ω(1H),

but for 1150(5.7%) of the datasets with where

2H:1H comparison was signifiant, the ω(2H)<

0.75×ω(1H). Consequently the estimation bias in

important evolutionary rates due to model mis-

specification for some of the datasets could be

significant. The inclusion of 3H components in the

model, lowers the 2H rate even more dramatically,

δ(3H+)∼0.77×δ(2H).

Simulations
False positive rates

We evaluated operating characteristics of the

likelihood ratio tests (LRT) for MH model

testing on parametrically simulated data. In the

simplest case of a single-branch (two-sequence)

null data generated under the 1H model, Type

I error rates for 2H:1H and 3H:2H tests were

on average below nominal. However, once the

level of sequence divergence became very high

(e.g., >3 expected substitution per site), the test

became somewhat anti-conservative, which is not

surprising for severely saturated data (Fig. ??).

Individual branches that are this long are highly

abnormal in biological datasets. Expanded to

multiple sequence alignments generated using

parameter estimates from four biological datasets,

simulations confirmed that all the tests employed

appear to be somewhat conservative; this is

by design because asymptotic distributions of

LRT statistics on when null hypotheses are on

the boundaries of the parameter space are less

conservative that the 1- or 2-degree of freedom χ2

distributions we use here (Self and Liang, 1987).

Power

The tests are generally well powered, especially

if the effect sizes (magnitudes of MH rates) are

sufficiently large (Table 4). The power to detect

two-hit substitution (2H:1H) is especially (>90%)

across all simulations. The test which attempts

10
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Table 4. Power to detect MH rates The fractions of
simulations datasets that had corresponding p<0.05. N =
number of simulations in each category, and the explicit
definition effect size is stated for each test.

Test All Large effect

N Power N Power

2H:1H 1956 94% 967 99%(δ>0.5)

3H+:2H 1940 64% 1056 83%(ψ>0.5)

3HSI:2H 447 33% 114 51%(ψs>5.0)

3H+:3HSI 1940 66% 1056 86%(ψ>0.5)

to identify non-zero triple-hit synonymous island

rates (3HSI:2H) is the least powerful, because

its signal is derived from a tiny fraction of all

substitutions, i.e. the effective sample size is

smaller that for the other tests.

False positives due to alignment errors

Whelan and Goldman (2004) suggested that non-

zero estimates of triple-hit rates could be at

least partially attributed to alignment errors. It

is impossible, with a few rare exceptions, to

declare that any particular alignment of biological

sequences is correct. Hence, in order to estimate

what, if any, effect potential multiple sequence

alignment errors might have on our inference,

we simulated one-hit data with varying indel

rates with Indelible(Fletcher and Yang, 2009),

inferred multiple sequence alignments MAFFT

(Katoh et al., 2002) in a codon-aware fashion,

inferred trees using neighor-joining, and performed

our hierarchical model fit. This procedure induces

multiple levels of model misspecification, and

errors: Indelible uses a different model (GY94

M3) to simulate sequences, there is alignment

error, and there is phylogeny inference error.

Sufficiently high indel rates coupled with other

inference errors can indeed bias our tests to

become anti-conservative, although these levels

are higher than what we see (based on

per-sequence "gap"/character) ratios for our

biological alignments. Empirical alignments have

gap content that is consistent with alignments

simulated with 0.01−0.015 indel rates, for which

test performance is nominal. However, care must

be taken not to over-interpret MH findings when

the alignments are uncertain.

Discussion

Nearly three in five empirical alignments

considered here provide strong statistical support

that at least some of the substitutions are not

well modeled by standard codon substitution

models that permit only single nucleotide changes

to occur instantaneously. More than one in five

prefer to have three-hit substitutions "enabled"

by the models. Substitutions involving serine

codons, which are unique among the amino-acids

in that it is encoded by two codon islands which

are two or three nucleotide changes from each

other, are prominent in driving statistical signal

for these preferences, especially if they occur along

short branches. Many other amino-acid pairs are

also involved in such exchanges, indicating that

not all of the statistical signal is due to serine

codons, although in a typical alignment only a

small fraction of sites (about 1%) prefer multiple

hit models strongly.

11
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Many previous studies have provided evidence

that evolutionary models that permit multiple hits

provide better fit to the data or are relatively

common, but the scale of this phenomenon in the

comparative evolutionary context has not been

fully appreciated, although the interest in model

development in this area is being rekindled. Our

results also show that the inclusion of multiple-

hit model parameters changes ω estimates, and

with them – potentially alter inferences of positive

selection, which was demonstrated for one class of

such tests by Venkat et al. (2018), and for data

simulated with multiple hits but analyzed with

standard models by Dunn et al. (2019).

How much of this apparent support for

multiple-hits comes from biological reality, and

how much from statistical artifacts, or other

unmodeled evolutionary processes – the so-called

phenomenological load (Jones et al., 2018)? Our

simulation studies provide compelling evidence

that the tests we use here are statistically

well behaved and possess good power, i.e. our

positive findings are unlikely to be the result

of statistical misclassification. Other confounders,

especially alignment error, have the potential

to mislead the tests, but only at levels that

appear higher than what is likely present in most

biological alignments. In addition, there are some

datasets (e.g., HIV reverse transcriptase), where

alignment is not in question due to low biological

insertion/deletion rates or structural information,

and these data still support non-zero multiple-hit

rates as well.

There is an abundance of data and examples

of doublet substitutions in literature, and

mechanistic explanations, e.g., due to polymerase

zeta (Harris and Nielsen, 2014) exist. There

are several papers arguing that the numbers of

apparent triple hits occurring in sequences is

greater than what we would expect solely from

random mutation (Bazykin et al., 2004; Schrider

et al., 2011; Smith and Hurst, 1999), however

the mechanism (if it exists) by which they might

occur is obscure. Sakofsky et al. (2014) have

suggested that DNA repair mechanisms could help

explain multi-nucleotide mutations, thus plausible

mechanisms for triple-nucleotide changes do exist.

Our analyses indicate that much, but not all, of

the support for non-zero triple hit rates derives

from serine codon island jumping, particularly

in cases when this must occur over a short

branch in the tree. Comparative species data

might lack the requisite resolution to discriminate

between instant multiple base changes and a rapid

succession of single nucleotide changes spurred

on by selection; the literature is split on which

mechanism is primal (Averof et al., 2000; Rogozin

et al., 2016). Such a common phenomenon is worth

further investigation, in our opinion.

Our evolutionary models are broadly

comparable to several others that have been

published in this domain, some of which have

more parametric complexity Dunn et al. (2019),

12
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or consider effects substitutions spanning codon

boundaries Whelan and Goldman (2004). Their

novel contributions are direct tests for the

contributions derived from synonymous island

jumping, and a simple evidence ratio approach to

identify and categorize specific sites that benefit

from non-zero multiple hit rates. These models are

easy to fit computationally, with roughly the same

cost as would be required for an ω−based positive

selection analysis, and we provide an accessible

implementation for researchers to use them.

Further modeling extensions, e.g. the inclusion

of synonymous rate variation, branch-site effects,

etc., can be easily incorporated.

Methods
Substitution models

The most general model considered here is the

the 3H+ substitution model and all others can

be derived from it as special cases (Table 1).

The model is a straightforward extension of

the Muse-Gaut style time-reversible, continuous

Markov processes model (Muse and Gaut,

1994). The instantaneous rate for substitutions

between codons i and j (i 6=j) is one of the

six expressions defined in Table 5. θij denote

nucleotide-level biases coming from the general

time reversible model (5 parameters), and πj

are codon-position specific nucleotide frequencies

estimated from counts using the CF3x4 procedure

(Kosakovsky Pond et al., 2010). ωk are non-

synonymous / synonymous rate ratios which

vary from site to site using a random effect

(D-bin general discrete distribution, D=3 by

default, 2D−1 parameters). δ is the rate for

2H substitutions relative to the synonymous 1H

rate (baseline), ψ – the relative rate for non-

synonymous 3H substitutions, and ψs – the

relative rate for synonymous 3H substitutions. All

parameters, except π, including branch lengths

are fitted using directly optimized phylogenetic

likelihood. Initial estimates for branch lengths

and θ are obtained using the standard nucleotide

GTR model, and models are fitted in the order

of increasing complexity (1H, then 2H, then 3HSI,

then 3H+), using parameter estimates from from

each stage as initial guesses for the next stage.

Hypothesis testing

Nested models are compared using likelihood

ratio tests with χ2
d asymptotic distribution used

to assess significance. d=1 for 2H:1H, 3SHI:2H,

and. 3H+:3HSI comparisons, d=2 for 3H+:2H

comparison, and d=3 for 3H+:1H comparison.

Comparisons to other models

The substitution model from Venkat et al.

(2018) is very similar to our 2H model, except

that θij in their model follows the HKY85

parameterization, and it is possible to allow

κ (transition/transversion ratio) to be different

between 1H and 2H changes, and frequencies are

parametrized as in the Goldman Yang model,

where target codon frequencies are used in qij,

(Goldman and Yang, 1994).
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Table 5. Types of modeled substitutions Six cases for instantaneous rates qij of substituting codon i with codon j

(i 6=j). The count columns shows the number of rate matrix entires in each class (excluding the diagonal) for two commonly
used genetic codes.

Type Expression for qij Example Count

Universal mtDNA

1H synonymous θijπj ACA→ACT : θCTπ
3
T 134 128

1H non-synonymous ωkθijπj AAA→AGA :ωkθAGπ
2
G 392 380

2H synonymous δ
2∏

n=1

θnijπ
n
j CTC→TTA :δθCT θACπ

1
Tπ

3
A 28 16

2H non-synonymous δωk
2∏

n=1

θnijπ
n
j AAA→ACC :δωkθACθACπ

2
Cπ

3
C 1540 1500

3H synonymous ψs

3∏
n=1

θnijπ
n
j AGC→TCA :ψsθAT θCGθACπ

1
Tπ

2
Cπ

3
A 12 12

3H non-synonymous ψωk
3∏

n=1

θnijπ
n
j GTG→TAC :ψωkθGT θAT θCGπ

1
Tπ

2
Aπ

3
C 1554 1504

The ECM model from Kosiol et al. (2007)

directly estimates numerical rates for all pairs

of codon exchanges in the GY94 frequency

framework from a large training dataset. However,

the patterns of exchangeability between codons

in the ECM model captures relatively frequent

exchanges between serine codons, which were

further reinforced by a codon partitioning analysis

of the resulting rate matrix.

The SDT model of Whelan and Goldman (2004)

uses a context-averaging approach to include the

effect of substitutions that span codon boundaries,

and is difficult to directly relate to our models;

the 3H model might be the closest to the SDT

model. Regrettably, there doesn’t seem to exist a

working implementation of the SDT model (pers.

comm from Simon Whelan), which makes direct

comparison to our approaches impractical.

The KCMmodel of (Zaheri et al., 2014) only has

a single rate for multiple hits (double or triple),

and has position-specific nucleotide substitution

rates (θ in our notation), so it would be most

comparable to the 3H model with δ=ψ.

The GPP model class of Dunn et al. (2019)

can be parametrized to recapitulate our models

because it can capture (in a log-linear parametric

form), arbitrary rate matrices with suitable

parametric complexity. Several of the models

considered in Dunn et al. (2019) include multiple

hits, but they are not directly comparable to ours,

mostly because they also incorporate ω rates that

depend on physicochemical properties of amino

acids, and because the exact parametric form

of the models are hard to glean from available

description.
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Empirical data

The Moretti et al (Selectome) data collection

consists of 13,303 gene alignments from the

Euteleostomi clade of Bony Vertebrates from

Version 6 of the database (Moretti et al., 2014)

and can be downloaded from data.hyphy.org/

web/busteds/.

The Shultz et al data collection (Shultz and

Sackton, 2019) contains 11,262 orthologous

protein coding genes from 39 different

species of birds and is freely available at

https://datadryad.org/stash/dataset/doi:

10.5061/dryad.kt24554.

The Enard et al data collection (Enard

et al., 2016) includes 9,861 orthologous coding

sequence alignments of 24 mammalian species and

is available at https://datadryad.org/stash/

dataset/doi:10.5061/dryad.fs756.

Our mtDNA data set consists of both

invertebrate and vertebrate Metazoan orders with

gene alignments of each of the 13 protein coding

mitochondrial genes. This data set was compiled

from NCBI’s GenBank for Mannino et al. (2020)

and can be found at: https://github.com/

srwis/variancebound.

Simulated data

The two-sequence simulated data set was

generated in HyPhy using the SimulateMG94

package from https://github.com/veg/

hyphy-analyses/. These sequences were

simulated under the 1H (no site-to-site rate

variation) with varying sequence and branch

length as well as varied but constant ω across

sites but no multiple hits. We generated 1000

simulations scenarios and drew 5 replicates per

scenario; ω was drawn from U(0.01,2.0), branch

length was drawn Exp(U(0.01,1.0)), and codon

lengths as an integer from 100 to 50000 uniformly.

Parameter values were sampled using the Latin

Hypercube approach to improve parameter space

coverage.

Multiple sequence simulations were based on the

fits to one of four benchmark datasets: Drosophila

adh, Hepatitis D antigen, HIV vif, and the

Vertebrate rhodopsin data. We took all model

parameter estimates under the 3H+ model as the

starting point, and generated 500 replicates per

dataset of which 35% were null (1H), 10% each

from 2H, 3SHI or restricted 3H+ (ψs=0) , and

35% from 3H+. δ, ψ and ψs parameters, when

allowed to be non zero by the model, were sampled

from U(0,1), U(0,1), and U(0,10), respectively.

Sequences with indel rate variation were

generated using INDELible v1.03 (Fletcher and

Yang, 2009). Indel rates were varied 0.01 to 0.06 in

increments of 0.005 (100 replicates per value), and

the site-to-site rate variation was modeled with a

3-bin M3 model.

Data availability

All of the sequence alignments, simulated or

biological, and simulation/configuration scripts

are available for download from data.hyphy.org/

web/multihit/
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Implementation

All analyses were performed in HyPhy version

2.5.1 or later. The method used to fit the

standard 1H model along with 2H, 3H and 3HSI

versions is available from as the FitMultiModel

package available from: https://github.com/

veg/hyphy-analyses/, and can be invoked with

hyphy fmm in version 2.5.7 or later.

Interactive results can be viewed at http://

vision.hyphy.org/multihit using JSON results

output by HyPhy.
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Table S1. Estimated ω rate distributions for benchmark datasets for different models on the benchmark datasets. E[ω] :

the mean ω value for the 1H model. E[ω]:2H
E[ω]:1H

: the ratio of mean ω estimates from 2H and 1H models. δ:3H+
δ:2H : the ratio

of δ estimates from 3H+ and 2H models. The datasets are sorted by increasing values of the E[ω]:2H
E[ω]:1H

column. Genes where

there was significant evidence (LRT p<0.05) of non-zero 2H rates are bolded, and those where there is evidence of non-zero
3H rates is underlined.
Gene 1H 2H 3H+

E[ω] ω1(p1) ω2(p2) ω3(p3)
E[ω]:2H

E[ω]:1H
ω1(p1) ω2(p2) ω3(p3)

δ:3H+
δ:2H

ω1(p1) ω2(p2) ω3(p3)

β-globin 0.28 0.0073 (32.4%) 0.28 (58.9%) 1.3 (8.66%) 0.6 0.00071 (28.4%) 0.17 (61.5%) 0.64 (10.1%) 0.86 0.0035 (30.2%) 0.19 (61.1%) 0.7 (8.68%)

Vertebrate Rhodopsin 0.12 0.0097 (58.8%) 0.17 (30.3%) 0.54 (10.9%) 0.7 0.0085 (60.6%) 0.12 (29.6%) 0.4 (9.79%) 0.75 0.0088 (60.6%) 0.13 (29.8%) 0.41 (9.63%)

Flavivirus NS5 0.047 0.0026 (63.9%) 0.07 (26.5%) 0.28 (9.57%) 0.73 0.0031 (67.1%) 0.062 (25.5%) 0.22 (7.4%) 0.68 0.0031 (66.8%) 0.063 (25.7%) 0.22 (7.55%)

Drosophila adh 0.1 0 (50.1%) 0.1 (33.8%) 0.43 (16%) 0.73 0 (38.1%) 0.047 (42.5%) 0.29 (19.4%) 0.76 0 (37.2%) 0.046 (43.2%) 0.29 (19.6%)

COXI 0.07 0.0027 (75.4%) 0.033 (17.3%) 0.14 (7.33%) 0.79 0.0031 (79%) 0.035 (14%) 0.12 (6.99%) 1 0.0031 (79.3%) 0.036 (13.9%) 0.12 (6.87%)

Sperm lysin 1.1 0.11 (36.9%) 1.1 (41.7%) 2.9 (21.4%) 0.83 0.096 (37.2%) 1 (43.8%) 2.5 (19%) 0.87 0.1 (37.6%) 1 (43.7%) 2.4 (18.7%)

Hepatitis D virus antigen 0.48 0.033 (46.2%) 0.4 (32.4%) 1.6 (21.4%) 0.84 0.038 (48.7%) 0.37 (30.2%) 1.3 (21.2%) 0.9 0.037 (48.3%) 0.36 (29.9%) 1.3 (21.7%)

Camelid VHH 0.95 0.12 (34%) 0.73 (40.8%) 2.5 (25.1%) 0.89 0.1 (34.7%) 0.66 (40.4%) 2.2 (24.9%) 0.92 0.1 (34.4%) 0.66 (40.2%) 2.2 (25.5%)

HIV-1 RT 0.19 0.016 (71.4%) 0.35 (22.2%) 1.6 (6.38%) 0.93 0.015 (70.9%) 0.31 (22.3%) 1.5 (6.82%) 0.93 0.015 (71.1%) 0.31 (22.2%) 1.5 (6.74%)

Encephalitis env 0.054 0.024 (77.9%) 0.028 (15.5%) 0.48 (6.62%) 0.96 0.023 (71.8%) 0.026 (21.6%) 0.46 (6.64%) 1 0.023 (75.8%) 0.026 (17.6%) 0.46 (6.64%)

Influenza A virus HA 0.47 0.095 (72%) 0.93 (23%) 3.7 (5.06%) 0.98 0.097 (72.8%) 0.95 (22.6%) 3.7 (4.69%) 0.99 0.098 (73.2%) 0.98 (22.4%) 3.8 (4.41%)

HIV-1 vif 0.84 0.14 (61.5%) 0.83 (20.6%) 3.2 (17.9%) 0.99 0.16 (66.2%) 0.96 (16.4%) 3.2 (17.4%) 0.16 0.16 (65.6%) 0.9 (16.2%) 3.2 (18.2%)

Primate Lysozyme 0.61 0.14 (0%) 0.22 (82%) 2.4 (18%) 1 0.14 (0%) 0.22 (82%) 2.4 (18%) 1 0.21 (16%) 0.22 (66%) 2.4 (18%)

2
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Multihit paper empirical results
Table 1 Dataset analysis summary

Study 2H:1H 3H+:2H 3H+:1H 3H+:3HSI 3HSI:2H

MTDNA/INVERT 92% (119.2) 7.4% (17.12) 92% (122.2) 8.9% (19.97) 2.3% (9.089)
MTDNA/VERT 54% (33.30) 3.0% (16.60) 50% (36.92) 3.2% (15.11) 0.69% (7.986)
IMMUNE 62% (32.39) 20% (17.76) 63% (39.87) 21% (13.63) 7.4% (12.84)
SELECTOME 76% (55.99) 37% (21.82) 77% (67.67) 20% (13.56) 29% (16.73)
PETROV 28% (15.69) 5.4% (14.18) 28% (20.39) 5.3% (10.49) 3.4% (11.07)
Overall 58% (42.91) 22% (20.08) 58% (52.08) 16% (13.33) 14% (15.70) ⬇

Figure 1 MH detection rates as a function of alignment length

Figure 2 MH detection rates as a function of sequence count

Figure 3 MH detection rates as a function of tree length

Figure 4 MH detection rates as a function of ω

Figure 5 Scatter-plots of rate estimates under different models
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FIG. S1. The effect of model choice on rate
estimates. Point estimates of global rate parameters under
different models for each of the empirical datasets.
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Figure 1 MH detection rates as a function of alignment length

Figure 2 MH detection rates as a function of sequence count

Figure 3 MH detection rates as a function of tree length

Figure 4 MH detection rates as a function of ω

Figure 5 Scatter-plots of rate estimates under different models, conditioned on a
significant test
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Multi-hit simulations
Exploration of null simulation results for the multiple hit model using empirical
simulation templates

Figure 1.a q-q plot for the expected (dotted line) vs observed p-values (2-hit vs 1-hit)
for null (no multiple hits) data
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FIG. S3. False positive rates for LRTs on simulated data. For the two sequence simulations, we further stratified the
simulations by the length of the branch, T , measured in expected substitutions per site.
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FIG. S4. Indel Rate verse TH Rate. Alignments with indel were simulated using INDELible across using the Dropsophila
adh tree and alignment length using GY94 M3 model with site-to-site ω variation. LRT p-values and rejection rates (FPR,
at p≤0.05) are shown for different tests in the top row. The bottom row sows estimated δ and ψ rates as a function of
simulated indel rates, as well as the number of sites inferred to have high evidence ratios (ER) for 2H or 3H modes. The
plot on the bottom right shows the average fraction of a sequence that in an alignment that is comprised of gaps is shown
for simulated data, and empirical collections.
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